
, -1-W.,U1..W1 . II I u

KNOWLEDGE WORKSHOP DEVELOPMENT

Douglas C. Engelbart

Stanford Research Institute

AD-A022 997

Prepared for:

Rome Air Development Center

30 January 1976

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

y

. *^-^<,*^*m^. n m irifimiiiifiii 1 i im ■ r- Ü

'i*'-*« M. m-m mir y ■ ■■ ,

I|WI»,JMIIH>

SRI-ARC 30 JAN 76 5 34PM 22133

107040

Q Knowledge Workshop
<t, Development
fZJ

Augmentation Research Center

30 JANUARY 1976

Ü

■iirün,

■A

DISTPJSUflorT STf TEB^ENT A'

Approved for public release;
Disuibution Unlimited

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 ■ U.S.A

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD. VA. 22161

f£
a :-a-^ .& .-rrf 1 " --

T-r ̂fef-rvumm mt^n^ig»-

RADC-fR-75-304
Finrt Report
30 June 1974

SRI Project 1868

SRI-ARC 30 JAN 76 5 34PM 22133

KNOWLEDGE WORKSHOP DEVELOPMENT

Augmentation Research Center

Stanford Research Institute
Menlo Park, Ca. 94025

Sponsored by
Defense Advanced Research Projects Agency

ARPA ORDER NO. 2853

Approved for public release
distribution unlimited.

The v^ews and conclusions contained ;n this document are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or

implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

Rome Air Development Center
Air Force Systems Command

Griffiss Aii Force Base. New York

1
-

^^ ^^ =: -^ - ^ ^-

SRI-ARC 31 DEC 76 3 31PM 22133

FOREWORD

This technical report has been reviewed and is approved.

XC*Z*4C- ^
Contract Engineer

0~>**<^

Ü

^T^-^r^^. -. i r ^^^ ■^^^^^^^.^^J=-^^ - -^ff^i^rrrt -- -r*-»--jTTfT=.—^ »gj I 1 -aä-MMlii—■

MMM I ■MWRWiasn—«« -=

SRI-ARC 30 JAN 76 5 34PM 22133

KNOWLEDGi: WORKSHOP DEVELOPMENT

Contractor: Stanford Research Institute

Contract Number: F30602-72-C-0313

Effective Date of Contract: 16 August 1973

Expiration Date of Contract and Amendments: 30 June 1974

Amount of Contract: $2,270,000

Program Code Number: F07619

SRI Project Number: 1868

Principal Investigator: Douglas C. Engelbart
Phone: (415) 326-6200, ext. 2220

Project Engineer: Duane L. Stone
Phone: (315) 330-385 7

Approved icf public release:
distribution unlimited.

This rneaich was supported by the Defense Advanced Research Projects Agency of the Department of Defense
and was monitored by D, L. Stone. RADC (ISIM). GACB, NY 13440 under Contract F30602-7? C-0313

&

rüHTiim- f"- ■- - —

■ I

SRI-ARC 30 JAN 5 34PM 22133

ABSTRACT

The oNLine System, Version 8 (NLS-8) developed at the Augmentation Research Center
(ARC) was brought to prototype operation. Improvement in fundamental design continued,
but new attention was given to applications and technology transfers. Strategies included an
effort to involve more and more users outside ARC, establishment of experts in NLS within
user organizations, a training program, an online query system to inform users about NLS,
revision of the command language, and operation of the Network Information Center. New
develfV'aents include a simple calculator subsystem, multi-host journal system, a variety of
options to tailor the system to different working conditions, file access controls, and a
control meta language to make user interface writing easier and more flexible. ARC
JcHoped a microprocessor-device, the Lineprocessor, to enhance inexpensive displays for
use with two-dimensional display NLS and reduce communication cost. ARC made NLS
available on a subscription basis through an information utility with its own computer.

Knowledge Workshop Development -- Reported as of 7/74 page I

SRI-ARC 30 JAN 76 5 34PM 22133

CREDITS

The work from 10 May lv72 to 30 June 1974 involved the following ARC staff (. >me of
whom have since left):

Andrews, Don I.
Auerbach, Marilyn F.
Bair, James H.
Bass, Walter L.
Beach, Mark
Beck, Jeanne
Bondurani, Rodney A.
Byrd. Kaye
Cooke, Judith
Dombush, Charles F.
Duvall, William S.
Engelbart, Douglas C.
Evans, David
Fcinler, Jake J.
Ferguson, William R.
Glenn, Joy
Guilbault, Carol
Hardeman, Beau regard A.
Hardy. Martin E.
Hopper, J David
Irby, Charles H.
Jemigan, Mil E.
Johnson, Sandy
Kaye, Diane S.
Keeney, Marcia L
Kelley, Kirk E.
Kudlick. Michael D.
Lane, Linda L.
Leavitt, Jeanne M.
Lee, Sus&n R.
Lehtman. Harvey G.
7Jeberman, Robert N.
Limuti, Donald
Lister, Friscilla M.
Murtin, Karolyn
Maynard, David
Meyer, N. Dean
Michael. Elizabeth K
North, Jeanne B.
Norton, James C.
Page. Cynthia
Parsley, Brace L.
Paxton. William H.
Peters, Jeffrey C.
Prather. Ralph
Rathff. Jake
Rech, Paul
Row, Barbara E.
Vallee, Jacques F.
Van De Riet. Edwin K.
v»n Nouhuys. Dirk H.
V» tor. Kenneth E.
Wallace. Donald C.
Watson. Richard W.
White. James E.

Knowledge Workshop Development - Reported as of 7/74 page 3

- ^--^-^ ^ ■-.-
~- nTwwi H llf> I !■! ^It^art&ä *

SR!-ARC 30 JAN 76 5 34PM 22133

TABLE OF CONTENTS

Section Branch

ABSTRACT I

CREDITS 2

TABLE OF CONTENTS 3

INTRODUCTION 4

CHAPTER I APPLICATION EXPERIENCE

Aspects of ARC's Technology Transfer Strategy 5
User Training and Development 6
Experience with an Online Feedback Mechanism 7

CHAPTER II USER INTERFACE

Issues in the Design of the NLS User Interface 8
A Command Meta Language for NLS 9
First Studies of NLS Command Use and Timing 10

CHAPTER III NLS SUBSYSTEMS
The Calculator 11
The Output Processor and Computer Output to Microfilm 12
Recorded Dialog: 13
User Program System and Library 14
Query/Help Software and Data Bises 15

CHAPTER IV WORKSHOP FOUNDATION

The Group Allocation System 16
NLS File System 17
Software Engineering 18
TENEX Development 19
System Measurement Tools 20

APPENDIX, HIGHLIGHTS OF THE PREVIOUS REPORT 21

Preceding page blank
Knowledge Workshop Development -- Reported as of 7/74 pape 5

in i j. ■ r— '- -■•-■■ 11 - ■ - - ^ - --^ ■ ' - -~--... M—-„ --„ -.-■■^-.TW^-rt .,w> - n i IITMI r r i -■■■■fii^

,

SRI-ARC 30 JAN 76 5 J4PM 22133

INTRODUCTION

TIME COVERED

This report covers Contract F30602-72-03i3, which extended from March 1972 through June
1974.

SUMMARY OF WORK UNDER THIS CONTRACT

In this period the central development -t ARC, the Online System (NLS), was brought to
prototype operation with outside groups. Passing this milestone led us to undertake clarification
of our mid-range goals, to make changes in the organization of ARC, and to give more energetic-
attention to a wide range of users through development of technology transfer, of system features,
and of services. We here report on ARC's goals in terms of the "Augmented Knowledge
Workshop" -- a computer-based set of tools for people who need to manipulate knowledge in
their work. ARC has been organized into a development branch, whose work is of primary
concern in this report, and an applications branch, dedicated to offering NLS as an information
utility; each is under an assistant director. 4fc'

The International Conference on Computers in Communications took place in Washington in
October of 1972. It was an important event for most of the research organizations associated
with the ARPA Network; it was particularly important to ARC. The Neiwork Information
Center prepared informative direciories of ARPANET participants, and published scenarios of
many systems demonstrated at the conference. Half a dozen ARC staff members spent full or
substantial part time preparing for NIC services at the conference, and for demonstrating ARC
functions through the Network, and took part m a variety of other support functions. Twelve
members of the staff were in Washington for the duration of the conference. 4«»2

Development of NLS 4£!?

NLS User Interface ^3i

We have made the NLS user interface simpler, more flexible, and easier to use. We
completed design and implementation of a Command Meta Language and command
interpreter system that allows creating commands in terms of what they do rather than in
our programmers' language (high-level language command specification). The CML system
compi'es the high-level terms used to describe commands into a tree of instructions to drive
the existing NLS command interpreter, centralizing both command parsing and feedback to
the user, ^1»

This approach allows experiments with different command language structures and
feedback, simplifies building subsystems, and allows users to tailor command languages for
themselves.

It also allows NLS "frontend" functions to move to a minicomputer. During this contract
period, before the move to the minicomputer took place, the new architecture resulted in
mere compact source code and more efficient running.

Preceding page blank
Knowledge Workshop Development - Reported as of 7/ 74 page 7

^-—^""^ Mill i MiTiiniiil

SRI-ARC 30 JAN 76 5 34PM 22133

4 Introduction

Other Changes «"«s

With the creation of the CML and our two years of experience with ARPANET users, we
redesigned the command language to make it more consistent, and added features oriented
toward novices.

MLS functions were reorganized into cleanly interconnecting subsystems. New subsystems
include an arithmetic calculator integrated with NLS text files, the Modify subsystem,
which contains automatic editing commands, and the Publish subsystem, which creates
references, tables of contents, and the like.

We added a User Profile where a user can specify defaults such as »he amount of feedback
she gets, function of comrol characters, size of printout, type of recognition, and so on.

We added hfip commands that provide either a quick list of alternatives, complete
command svntax, or access to complete, queriable documentation at a point related to what
the user wus doing when she asked. Cues to what the user was joing are derived from the
CML.

User programs in the L10 programming language became increasingly important as the
world of NLS applications widened, and programs supported by ARC were integrated into
docuru ntation and organized into a directory.

A restricted NLS Macro facility based on the command language, but lacking in loops, was
impknunted.

Provisions have been made to restrict access of NLS files to a list of idents selected by the
file ownt

Dialog Support 4b3 6

We integrated the f-'La .'ournal into the ARPA Network Mail System both for input and
output; we ha^e taken a 'nding role in creating a Network Mail Protocol. ^'t:

We designed a Oistributfd fournal System and associated network protocols that allow
various Journal functions such a» distributing, recording, cataloging, storage and retrieval to
exist and cooperate en scattered hosts. 4b?o?

We implemented an initial system in which two Network-based PDP-IO's cooperate in
supporting a common Journal system. 46 36 3

Privacy provisions were added to ii;e Journal. A user may restrict access to a list of idents
she supplies. Private items are not cataloged. mt*

Display Concepts and Terminals 4b3c

Display NLS was made more available to users working through the ARPANLT or
otherwise working remotely. In 1972 it l<canK available through Imlac (ermimls; in 1973
we developed an inexpensive microcomputer based oox, the Lineprocrssor. "^i

The Lineprocessor and associated software allow cheap, mass produced alpha-numeric
terminals to display NLS files in the optimum two-dimensional manner integrated with the
Mouse and Keyset. The Lineprocessor does not require modification of ihe terminal.

page 8 Knowledge Work hop Oeveiopmenl -- Reported «s of 7/74

rattii - ^-^ **

•■

SRI ARC 30 JAN 76 5 34PM 22133

4 Introduction

This work included extension of the NLS virtual terminal concept and development of
associated communication protocols for the ARPANET. The results were useful in the
development of the Network Graphics Protocol.

The Lineprocessors are being produced commercially for abou 51000 per unit and were
just coming into use on the Network at the close of the contract period.

Operat ng System

The backup file archival and dump system, BSYS, developed at AÄC, was released to the
TENEX community.

A group allocation scheme to control logins to the system was huilt, , ut into operation, and
released to the TENEX community. It split the users into groups and limits the number
that may log in from each group. Allocation may vary during the dav. Provision is made
for brief "Express" logins over normil allocation. J

Changes in TENEX necessary to support the Typewriter and Display versions of NLS
became part of the standard BBN release of TENEX to allow future support of NLS on
any standard TENEX. J

We have found it advantageous to make several changes in our own TENEX, notably in
the scheduler, while still remaining in harmony with BBN's standard TENEX releases.

We have built a system, Superwatch, to collect information on the consumption by various
procedures and by users of CPU and clock time. ^

Network Information Center

During the contract period, the Network Information Center was the main source of
information about the personnel, computing facilities, and organizations associated with the
ARPANET, and of a lai^e volume of related data. I* was also an innovative development
in providing information to a community of computer users, in online, offline, and mixed
form. Service included support and cataloging of online dialog (tnrough the Journal), an
online database and query language, dissemination in hard copy of a Resource Notebook,
an ARPANET directory, and Network protocols, frequent tours for visitors, and response
to questions from the computer public.

At the end of the report period, the operations of the Network Information Center were
curtailed from the experimental nrray of NLS-based information exchange services to
maintenance of directories of persons and resources for the AKPA network; a detailed
account and evaluation of Network Information services is to be published as a separate
technical report [1).

THE ORGANIZATION OF THIS REPORT

Since 1970, the central funding of ARC's work has been a series of ARPA contracts. The
resulting series of reports (7101,) (5139,) and (13041,) [2] [3] [4] outlined the evolution of
ARC and the development of NLS in those years. By the middle of this report period, however,
a prototype Knowledge Workshop existed, and much of ARC's thinking, particularly planning,
turned toward defining new goals and opening applications in different directions The support uf

Knowledge Workshop Development -■ Reported as of 7/74 page 9

ii ii ii'iiaMBi

■ ■■

SRI-AFC 30 JAN 76 5 34PM 22133

4 Introduction

ARC in the fiscal year beginning in July 1974 is more widely spread than evt ■ before, a trend
that we expect to see continue.

One result of the evolution of project emphasis is reflected in the organization of his report. The
work during this contract period is reported under four headings:

Chapter I: Application Experience

Chapter II: User Interface

Chapter III: NLS Subsystems

Chapter IV: Workshop Foundation

The detailed descriptions under these four headings are reported in a series of wiat amount to
individual papers. Inevitably this approach, while preserving the work of individual researchers,
leads to a certain amount of redundancy We apologize; however, this format seemed appropriate
for work that reflects a core of accomplishment, but is sufficiently diversified that write-ups aimed
at specialized audiences are appropriate.

To take advantage of the automatic reference search of our online system, bibliographic citations
in this report look a little unusual. They will appear in two forms:

A string of numbers and letters in parentheses or angle brackets [e.g., <9al>] cites «^ome
other part of this report as identified by the statement numbers printed to the pghi of the
page. Online, a reader may cite such an address and move automatically to the appropriate
part of the report.

A number in square biackets (e.g., [2]) cites a reference that is listed at the end jf that
particular section in which bibliographic information about these documents is supplied in the
usual way. Each reference in turn cites the statement where the reference has orij'inally been
cited. The four or five digit number at the end of the reference citation itself h the ARC
catalog number. All of the documents cited in this report are either online or archived, and an
online reader may move to that file automatically.

A glossary of NLS-8 terminology and associated concepts has been published [5].

REFERENCES

[1] (4b3e2) Michael D. Kudlick. Network Information Center. Augmentation Research Center,
Stanford Research Institute, MeJo Park, California 94025. June 1975. (25088,,i

[2] {4c 1) (4c4b) John B. Postel (UCLA-NMC). Official Initial Connection Protocol (Document
No. 2), Network Information Center. Augmentation Research Center, Stanford
Research Institute, Menlo Park, California 94025. il-JUN-71. (7101,)

[3J (4c 1) Douglas C. Englebart, and Staff of ARC. Computer-Augmented Management-System
Research and Development of Augmentation Facility. Augmentation Research Tenter.
Stanford Research Institute, Menlo Park, California 94025. APR-70. (5139.)

page 10 Knowl'-dgc Workshop Developmenf - Rcf 'rted as of 7/74

SRI-ARC 30 JAN 76 5 14PM ^2133

4 Introduction

[4J (4c 1) SRI-ARC. On.me Teair Environment / Network Information Center and Computer
Augmented Team Interaction. Augmentation Research Center, Stanford Research
Institute, Menlo Park. California 94025. 6-MAR-73. (13041)

[5] (4c5) SRI-ARC. MS-8 Glossary. Augmentation Research Center, Stanford Research
Institute, Menlo Park. California 94025. June 1975. (22132,)

Knowledge Workshof. Development -- Reported as of V74 page II

jr- jiTtiTüii^ --- ..-^ ^ ^^-^

SRI-ARC 30 JAN 76 5 34PM 22133

Chapter I: APPLICATION EXPERIENCE

Aspects of ARC's Technology Transfer Strategy
(by Richard W. Watson, Douglas C. Engelbart, and James C. Norton)

INTRODUCTILN

By 1972. following the connection of the ARC computer system to the ARPANET and the
establishment at ARC of the Network Information Center (NIC), we began to actively plan for
and carry out an explicit technology transfer strategy [1]. Previous experience had indicated
traditional approaches to technology transfer-publishing papers and reports, giving
demr wstrations at conferences and at SRI, making movies, and giving slide shows and talks-while
useful, were not enough to achieve technology transfer at the rate Jesired. Additional
mechanisms were needed, particularly, hands-on experience by target groups. This chapter
outlines some of the additional mechanisms being us^d and considerations for their selection.

Discussion

At the heart of our views on technology transfer is the belief, based on experience, that the type
of information system we are developing can only be developed and evolve in an environment
with «"eal users doing their everyday work on the system. We at ARC had been the prime users
of the system over the first decade of its development, but in he last three years have begun to
seriously enlist outside users from a variety of organizations. The importance of obtaining views
and feedback from the users with a variety of needs from many organizational environments is
vital to the ongoing healthy evolution of a flexible and genera!-purpose knowledge workshop.
Based on this premise, we have teken four steps:

1) We organized our internal activities during this contract period into three areas that we call:
a) Analysis
b) Devclopmenr
c) Applications

The functioning of these three parts as a harmonious whole constitutes our research process.
Development creates new user features system organizations, and usage methodolgy based on
experience and anticipated needs. Applications provides computer and other services, such as
training to real users, both internally within the project and to outside groups. Analysis
studies, at many levels, the ongoing system evolutionary process.

2) We have set up an ARPANET-connected facility managed by Tymshare at their Cupertino,
California, computer center to serve as a reliable utility for delivery of workshop computer
services developed at ARC and elsewhere. The present PDP-'^ system is called Office-1 and is
accessible through the ARPANET and directly through low-speed or high-speed phone lines. As
part of the delivery system hi have also developed a lou-cost unit called a Lineprocessor (now
commercially available) to vupport the display version of NF-S from low-cost u ..imercially
available alphanumeric CRTs [2]

Knowledge Workshop Development - Reported as of 7/74 page 13

Preceding page blank

.-i-n.-fT. rTi - ^ r ■■.«-■f-r ^--^r-äaä

SRI ARC 30 JAN 76 5 34PM 12133

I Application Experience
5 Technology Transfer

The ability to otTer reliable computer service is crucial to the
Development-Application-Analysis strategy. Staff and facilities with the know-how and
motivation to create such a facility are not easily maintained by a highly Development- and
Application-oriented organization sueh as ARC. Therefore, an important decision was made
in 1972 to subcontract computer facility management to a corporation like Tymshare that has
the staff and physical facilities for providing the needed services. Tymshare is responsible for
hardware and operating system reliability. ARC is responsible for all services at higher levels. <• *

This has been a valuable and trend-setting move within the ARFA R&D computer
community. ^"

3) We are asking each subscribing organization to provide what we are calling a "workshop
architect," whose prime loyalty is to the using organisation (preferably a person from the using
organization, although we will provide a person for that role if necessary) to plan and conduct a
staged evolution of the technology and training appropriate to his organization. '*-

The importance to successful technology transfer of having a person within the target
organizaiion who is familiar with his organization's needs and the outside technology has been
clearly demonstrated in the works of Allen (3][4][5][6][73. Allen has called such a
person a gatekeeper, and has shown that most technology transfer occurs through such people,
usually operating on an informal basis. We are trying to formalize and make explicit this role. J ■<

On the ARC side we have created the roles of architect liaison - whose function is to help
defin1 and shape the subscribing organization's basic level of service; and applications I» .ison --
whe assists in developing those specific applications suitable to each client. Both ure to he
generally knowledgeable about ARC technology and outside user needs. It is across these
overlapping liaison and workshop architect roles that we hope to achieve effective transfer,
while being supported by other technical, analysis, and training personnel as well. *•> ;

4) The technology was originally developed on the assumption that it would be used as the
everyday working environment of its users and that therefore the users would quickly be of the
expert category. Experience has shown that a) it will probably be some time before this is the
case, and b) even where it becomes the case, there is a critical transfer phase. Therefore, we have
begun during the past year to pay much more attention to levels of documentation, usage
scenarios, help, novice language features, etc.. to provide a spectrum of functions from new to
experienced users. a

Our experience indicates that conscious attenrio to technology transfer by an R&D group affects: ' »*

A) Its organizational structure »«»

B) The types of skills and roles needed ■■>*'•

C) Its R&D strategy. »^

page 14 Knowledge Workshop Development -- Reported as of 7/74

i^r, ...i.T^fc^^-

SRI-ARC 30 JAN 76 5 J4PM 22133

J Application Experience
5 Tecimology Transfer

LET US NOW LOOK AT THE FIVE TECHNOLOGY TRANSFER ISSUES THAT
LEAD TO THESE STEPS

1) Need for demand pull versus technology push.

We feel that successful transfer takes place only when a real need is met. Just to have a clever
new toy is not sufficient for a technology to stick. It must meet a real need at a cost
appropriate to the users value in order for transfer to be realized.

This need to understand real needs in the outside world and to try to determine how well we
are providing value leads to the creation of an Analysis function to study needs and analyze
how well we are meeting them. We brought in an experienced operations research person with
little interest in the technology as a thing in itself to provide this perspective.

Because of changes in funding levels and pressing needs for trained personnel within the
Applications group, we have temporarily halt .i the Analysis function. Recruiting people with
the appropriate interests, training, experience, and motivation for the important Analysis
function is a difficult task. It is a highly interdisciplinary function and is not easily filled by
the present orientations of academic computer science, operations research, or psychology
departments.

Usage by real users with work and applications to do ether tlr.n build the NLS system is
providing us with the feedback and contact with real needs that we feel are necessary to help
us operate more on the need-pull side of the technology pull-push spectrum.

2) One has to know where one is with rejpect to the two questions:

Is one trying to show something is feasible? OR

Is one trying to show something meets a need and should be con'inued?

We feel the former was accomplished and hat we are in the latter area, thus requiring a shift
in emphasis from technology-push to I. ^ed-pull.

3) The ease of technology transfer is proportional to the risk and cost to the user in terms of toial
system, organization, work habit, and training he has to undergo to adopt the new technology.
Technology transfer has been described as more of a battle than just a matter of commur.eating
an idea. Our experience confirms this view.

To meet this issue we are asking use/ oiganizations not to try to adopt our technology on a
broad scale, but to find a sub^oup to try first, learn the advantages and problems, and then
develop people trained in its use to take the next steps.

4) Transfer of our type of technology is most successful by transfer of people. Studies at MIT of
developments done at MIT and their transfer to industry found that on the order of 90% of the
successful transplants were achieved by students or faculty going to work for the organization,
obtaining an understanding of the organization's problems, and tlien bringirg in the technology he
was familiar with. Industrial firms transfer many of their people periodically for just these
reasons.

Knowledge Workshop Development -- Reported as of 7/74 page 15

 i ■■ i ,- -^-rntiT- ^ -^——— ^"'-"^

SRI -ARC 30 JAN 76 5 34PM ?2 1 33

I Application Experience
5 Technology Transfer

However, it is not easy to transfer people from SRI to outside groups, nor do we have enough
people to do that. This problem, when coupled with the motivation of the gatekeeper concept,
supports our establishment of the workshop architect role [3][4J5][6][7].

In the future when we have our experiment off the ground, we may try to transfer ARC
people to user groups for six months to one year, and vice versa. For the past three months
and for the coming months, we have stationed one ARC person in Washington, DC, where a
number of NLS user organizations are clusteied, to provide an approximation of such a role.
We have found this close contact useful and important to the transfer process.

We would like internally to move our people through the Development, Analysis, and
Application areas to help them obtain several points of view, as our tev.hnology transfer efTort
matures.

5) To transfer a system such as ours, and even many of its ideas, requires much more than
publishing papers and reports. One needs a gut feeling that only a demonstration or. better yet.
hands-on experience can give. This has led us to encourage visitors lo ARC and to set up the
NLS utility to provide service to real users. One problem we have faced is the task of finding
suitable low-cost, commercially available display terminals for NLS use. Thus, most outside users
to date have had to use the typewriter version, which has quite different user characteristics and
feel from the display version they see in use at ARC. To make the display version more widely
available, we have deeioped a special microcomputer-based box for use with commercially
available alphanumeric terminals that enables them to be used without modifications as true
two-dimensional display NLS workstations [2].

CONCLUSIONS

Experience to date indicates that the elements of a technology iransfer strategy have put us on the
right track, althoi'gh there is much yet to be learned about the process. It has shown us that
technology trans can be made an explicit, conscious process and that the efficiency and
efTectiveness of technology transfer can be improved as a result.

REFERENCES

[I] (5a2) Douglas C. Engelbart, Richard W. Watson, James C. Norton. The Augmented
knowledge Workshop. In AFIPS Proceedings, Vol 42, 1973 National Computer
Conference, pp. 9-21, 1973. (14724,)

[2] (5aö) (5b5) Don I. Andrews. Lineprocessor: A Device for Amplification of Display
Terminal Capabilities for Text Manipulation. In Proceedings of the National Computer
Conference, 1974, p. 257-265 (20184.)

[3] (^a^a) (5b4a) Thomas Allen. Technology transfer to developing countries. The
International Gatekeeper. In ASIS Proceedings. Vol. 7. The Information Conscious
Society, 3:.rd Annual Meeting. 1970. p. 205-210. (13959,)

page 16 Knowledge Workshop Devc.'opmcni - Reported as of 7/74

SRI -ARC 30 JAN 76 5 34PM 22133

I Application Experience
5 Technology Transfer

[4] (5a7a) (5b4a) Thomas Allen. Technology transfer to developing countries: The
International Gatekeeper. Massachusetts Institute of Technology. Feb-7I. (13859,)

[5] (5a7a) (5b4a; Thomas Allen. Roles in Technical Communication Networks. Massachusetts
Institute of Techncogy. 1970. (13977.)

[6] (5a7a) (5b4a) Thomas Allen. Performance of Information Channels in the Transfer of
Technology. Massachusetts Institute of Technology. 1966. (15538,)

[7] (5a7a) (5b4a) Thomas Allen. Information Flow in Research and Development Laboratories.
Massachusetts Institute of Technology. Mar-69. (15539.)

Knowledge Workshop Development - Reporlcd as of 7/74 pape 1"

rrT—tt^-.T, I ' Tl • -^ -^^. -^^.^^£ sm ah vi

SRI-ARC 30 JAN 76 5 34PM 22133

User Training and Development
(by Dirk H van Nouhuys and James H Bair)

BACKGROUND

At the beginning of this report period, efforts to train boih internal and external users, for the
purpose of transfering knowledge of NLS, consisted of training courses offered through ihf.
Network Information Center (Journal,!304l,5g 10), distribution of a Reference Manual, Journal
dialog [I] ARC and external users, workbooks, and informal but ftrc^iei t question answering by
members of the ARC stafT, particularly through online links. j

EXPERIMENTAL PERIOD

The first year of this contract was a time of experiment in media and techniques as shown in
Table 1 and also in goals and organization. We had to construct answers to such questions as: ^

Was it our function to train users local to ARC, NIC users, or all comers? **•»

Should we train users to the limit ot iheir ability, enough to get them started, enough to
perform some specific task, or should it vary from user group to user group? "-

Should training materials and courses be aimed at, for example, bright computer professionals,
managers, secretaries, or should we, at considerable effort, develop a suite of training modes to
fit various groups? ~

The system that evolved from our attempt to answer these questions is described below. It dofs
not seem worthwhile to summarize the internal debate that took place. U is however important to
reflect that a group such as this faces these kinds of questions and debate along with a shortage of
critena to guide conclusions. When we attempted to analyze results in order to choose our fulure
course we found the analysis demanding, and that in many cases w? had frequently gone ahead
on the basis of our expeiience. **?

In the summer of 1973, our training was substantially reorganized, partly on the basis of
experience, partly because of new expertise imported into the group, and because a substantial
part of the training effort shifted to another contract. Table 1 summarizes our experience up to
that time according to mediun with some comment on the enduring value of the methods. ^ •

LIST OF EARLY TRAINING METHODS AND MEDIA

Hardcopy training aids *

TNLS, Dex, L-10, and Journal User Guides". f>--»

Use; Internal reference, distributed widely through the NIC for refeience at NIC stations,
as hon^work before courses, and to give an impression of NLS to interested parties. ■>:

Current Stair Kept up-to-date except for NLS-8, not distributed or used in courses,
availrole on request. *-'•»■'

Preceding page blank
Knowledge Workshop Developmenl - Reported as of 7/74 page \9

SRI-ARC 30 JAN 76 5 34PM 22133

I Application Experience
6 Training and Development

Comment: Really reference documents: exhaustive, hard to read and maintain except for
restricted subsystems. A:'^*,

references: [2][3]l4I5][o][7]

A set of flip charts of NLS commands and allied subjects for the TNLS course. ^

Use: As prompts for instructor and visual aids for students. * :t

Current State: No longer used due to their unwieldy bulk in traveling and the difficulty of
displaying them at client sites. Handouts, viewgraphs, and blackboards are more practical. ° —

Comment: 8.5 by 11-inch color copies of the most important charts were distributed; now
out of date and not reprinted. * :-

A series of workbooks (like Sullivan Readers). *'■-

Use: A person learning alone at an online terminal has exact, key stroke-by-key stroke
guidance showing operation of most NLS features. —

Current Stale. Available on and offline for NLS-7, little used. i:-

Folklore which '»'as reprinted and sent out to supplement the Tser Guide from time to time. -

Use: Urxiating manuals and providing information about procedures that were customary
rather than command rules. '■*■

Current State: No longer used. NLS-7 does not change and HELP (See Section 12).
provides information about NLS-8. ^ a

Comment: It was very difficult to get users at distant sites to shelve properly or use
folklore. Traveling trainers can update a Site Notebook containing the latest documentation
for the users'reference. ^ ^

References. [QI1Ü] "'**

Journalized response to journalized questions. ^ <•

Use: Very extensive for answering questions from other network sites. ^ *

Current State: Largely replaced by user feedback systems described below (6d) . ^ «•

Comment: An important medium of exporting techniques of NLS use. ^ ■•'

References: [11] for example. « ' •

A wallet-sized card of the viewspecs and mouse and keyset codes. »£:•

Use: People keep it beside their terminals. *-

Current State: In use. * :4

Comment: Visitors frequently Uke the cards as a physical embodiment of the special
qualities of NLS. «^ ''

References: [12] ^ '•

page 20 Knowledge Workshop Dcvelopmeni -- Reported as of 7/74

■

SRI ARC 30 JAN 7b 5 J^PM 22 I J3

I Application Experience
6 Training and Developmenl

A command cue card that folds to shir» pocket size.

Use: For reference when working alone and in class: handed to visitors.

Current State. In use.

Comment: Two-color.

References: [13]

Documents that describe the envelope of philosophy and procedures around NLS.

Use: By people organizing use of NLS at other sites.

Current State: Available through Journal hard copy.

Comment: Little read to our knowledge.

References: For • Aample, [19] is thoughtful; [I] is general, whereas [17] and [16]
deal with daily details. [15] and [14] ^re more recent examples.

Online Training Aids

The TNLS HELP Command ["?"] at any point in a command lists the legal command terms
at ihat point.

Use: A frequent and important method of learning for people who already know a little.

Current Stale:

In use in TNLS. Never implemented in old Display NLS. Expanded in NLS-8 in Display
and TNLS; supplemented and coordinated with HELP system.

Comment. Also useful for more advanced users to remind them of a command term for a
particular use.

The Userguides, workbooks, and procedural documents described above.

Use: In general the same as the hardcopy versions for people when the system is available.

Current State: The Userguides and wr rkbooks are kept up to date.

Comment: Userguides read on the Utility.

References: [7I6I5I4I3I2I811811117][16115114]

Demonstration via linked terminals.

Use: Usually the result of an inexperienccu user seeing the name of an experienced user of
her acquaintance on the system and asking a question.

Current State: This practice continues at the utility although the feedback system partially
replaces it.

Comment: An important medium of technology transfer: there is nothing quite like seei g
it done.

A series of seminars in NLS 'Continuing NLS Education) based on remote online
demonstration with some linking and shared images with other sites [19).

Knowl'Jge Workshop Development - Refmrted as of 7/74 page 21

SRI-ARC 30 JAN 76 5 34PM 2^133

I Application Experience
6 Training and Development

Use: Teaching new or out of the way features to people who already know basic NLS. ^.'a:

Current State: Not used. « ^r

Comment: Connection with other sites was difficult technically at the time; it might be
easier now. Local users paid lip service to developing their skill, but in practice preferred to
do work and stayed away from seminars. 4C?öI

References: [19] oc.a^

Face-to-face Teaching ä. *

A series of courses at ARC in TNLS for local people and people from the net ork and for
network people at other sites. 6^«

Use: Conceived as the main medium of exporting knowledge of NLS. The interaction of
people talking, framing and reframing questions and answers, helps a lot in communicating
the novel concepts and language of NLS ^ ^

Current State: Continues for subscribers to the Utility. « ^

Comment: Many people learned NLS this way, but only if they continued to use it after
the course was over. It served as a showcase for NLS to others. * »a *

References: [20] M

A series of training sessions for people in more or less clerical positions at ARC. * ^

Use; To increase the skills of people with little or no formal training whose work did not
demand innovative use of the system. *c «t:

Current State: Pressure on resources forced discontinuance of special courses. Clerical
personnel now take the same cour.es that are offered to clients. * ' =

Comment; All clerical staff at ARC are trained in TNLS. tt t»

Local question answering. »> ^

Use; An effective way of augmenting the teaching of NLS locally. « ^

Current State: Very active due to the availability of knowledgeable users in the open,
common terminal area. ^ «.-;

Comment; Time-con. uming hr experienced users. - «d

Teaching L-10/NLS, and Y€N£X programming. '3

Use: To .naintaiii the skins for development and maintenance of our system. ^ >«:

Current State; Aside from the limited introductory documentation, teaching how to
program in our system consists entirely of tutoring by experienced programmers. *= ^

Comment: Perhaps the situation is tolerable as long as the group of programmers is neither
too small nor too large. * «s«

page 22 Knowledge Workshop Development - Reported as of 7/74

rr^ ^

SRI-ARC 30 JAN 76 5 34PM 22133

I Application Experience
6 Training and Development

Video lapes

Use: Dissemination of general impressions of ARC work; teaching small parts of the system.

Current State: After a lapse in use, more ambitious produc ion of overviews of NLS activity is
going on under another contract.

Comment: One overview and one live sequence from a TNLS class were produced. Very
time-consuming for staff. Technical quality fair to poor The training tape is little viewed and
now out of date.

References: [21][22]

Computer-aided instruction

Use: Might te used someday for online teaching of NLS.

Current State: BBN has a contract to develop a course in basic TNLS on their SCHOLAR
system.

Comment: Very expensive -- impractical given NLS and the state-of-the-art in CAI.

References: [23][24]

Control files vhich p-rmit you to record an NLS session and play it back in real time.

Use: We have always believed control files might be useful in training oui have never used
them.

Current State: Available but not presently used for training.

PRESENT USER TRAINING AND DEVELOPMENT STRATEGY

Background

The evolution of augmentation technology has included offerir.g NLS as an experimental
service. As a consequence, learning how to support the users of such a service nas become a
major goal of ARC. To that end. positions have been established to provide those
non-computer and para-computer services that are seen as necessary to make such a utility
service viable. These positions have responsibilities in the areas of instructional development,
training, front end analysis, user interface, documentation and feedback coordination. They
function in cooperation with other areas (such as operations management,programming
development and debugging, and marketing) with the goal of facilitating the use of NLS in
varied user environments for multiple applications.

Areas of Work

Training

The scheduling, custom tailoring of courses, and the collection of data on the training and
implementation process are to be centra'Iy managed. This will permit the systema'.ic
development of training methods during the evolution of the user population.

Knowledge Workshop Development -- Reported as of 7/74 page 23

^^.^i-i..., .li.-a

SRI ARC .30 JAN 76 b34PIV 22133

I Application Experience
6 Training and Development

Instructional Developnvnt

Instructional development includes: «

1. The development of NLS Graduated Courses for a user oriented progression through
NLS commands, syntax, and procedures.

2. Design recommendations on software development for NLS modules based on an analysis
of user experiences from a psychological viewpoint.

3. Development of training packages and "application scenarios" to guide the
accomplishment of particular tasks and applications.

4. Inputs to documentation concerning user needs, including document content, layout, and
structure.

User Interface Analysis

Review of the command language, error messages, an i other aspects of the i:.ser interface
from a psychological viewpoint in order to make recommendations to the Software
Development team. The goal is to aid in rendering NLS as intuitive and straightforward as
possible to non-programming users.

Feedback Coordination

Operation of the mechanism to sort, route, and respond to direct user inquires.

Analytical Reporting

1. Training reports describing specific training processes and noting the result.

2. Writing reports and gathering research relevant to the foregoing and technology transfer
in general; sharing and interfacing with other experts in this area.

3. Reporting the efTect of any reaction to NLS by the user population.

User Development Handbook

Maintain an offüne record of courses, reports, feedback, etc., for reference.

User Profile Data Base

Organizational and individual user profiles in a structured database available for reference.

Accomplishmentr

Instructional development

Numerous courses have been given in NLS to various groups of individuals over the years.
However. ncT formal course had evolved that could be utilized by a trainer. A formal
course has the advantage of graduating the exposure to NLS in such a way to maximize the
user's progression from a minima] capability to the highest level he wishes to attain. Those
elements (concepts, commands, syntax, procedures) that are most appropnate to the
situation, give a basic operating capability, and eliminate the need for alternatives, can be
selected in view of past training experience, psychological considerations, arid logical
relationships within the system

page 24 Knowledge Workshop Development -- Reported as of 7/74

.^rr^ran--""
iMjt-L.« i.iW>r^

'-■'"- ■ •

SRI-ARC 30 JAN 76 5 34PM 22133

I Application Experience
6 Training and Devebpment

The system tools permit the development of graduated formal courses by invoking content
filters to filter out those elements not to be covered in a session, and representing the
relationship of the elements in a hierarchy. Courses in TNLS and DNLS were developed
during this period and refined as a result of use in varied environments:

1. The five-level graduated progression through TNLS

2. The filtered progression through DNLS

The course outlines ideally can be self-documenting by providing the exact command syntax
to accomplish ^aightforward operations, such as editing and printing. Such a course was
designed and tested in two user environments, and published for general use in training
situations. It includes a command summary with those commands that were selected to
represent the most basic level of NLS skill and usage, [25].

User Profile Data Base

The rapidly expanding user population has become large anH comp'ex enough to warrant
an ongoing record of the individuals who have been exposed to NLS or trained. The
record includes notation of the training delivered, the position in the organization, and the
relationships in and among organizations.

The hierarchical structure of NLS is ideally suited to represent the relationships in the
database, ^nd to facilitate the frequent updating that is necessary.

The Feedback Mechanism

This was established [26] to ensure that the users of the experimental service have a
mechanism whereby they can submit problems, comments, suggestions, etc. To that end, a
directory ("Feedback") was implemented to serve as a depository for inquiries made via
the system. The operation of the mechanism includes sorting the inquiries, consulting the
appropriate expert, and responding within one or two working days via the same system
channel used for the initial inquiry. Each item received is treated individually, and then
sorted on the basis of the action taken. oa^i

An analysis of the stored inquiries and responses (collocated) is made periodically, including
a frequency count of the number of inquiries relevant to a particular issue or problem.
Future analysis should examine the input more thoroughly and sort the responses with the
inquiries, to provide a database from which to draw conclusions about software
development. ^J--

Operation of the mechanism has involved three general areas: 6d3c3

1) instruction: Answers to inquiries that require pedagogical responses. When these are of
general interest they are distributed to additional uses as Training Memos.

2) Software repair: bug fixing by contacting the appropriate programming staff.

3) Hardware problems and acquisition: Providing consultation or repair to make equipment
reliable and consistent (e.g., noise in telephone connections).

Knowledge Workshop Development -- Reported as of 7/74 page 25

■i ii n r-mtVifi

- -

SRI-ARC 30 JAN 7i: 5 34PM 22133

I Application Experience
6 Training and Development

Analytical and Training Reports

1. User Development Report: Training Tour 1 to 11 May 74
Location: [27]

2. User Development Report: Training Tour 11 to 20 Mar 74
Location: [28]

3. User Develcpmem Trip to Bell Canada & Preapplication Analysis
Location: [29]

4. User Development Trip to RADC. 19 Nov 73
Location: [30]

5. Bair/Norton Trip to Bell Canada and RADC, Dec.73
Location: [31]

ACKNOWLEDGMENTS

Many members of the ARC staff participated in training, preparation for training, and prepar ng
documents and other aids during the contract period. Foremost are Marilyn F. Auerbach,
Harvey Lehtman, Kirk Kelley, Beauregard Hardeman, Michael D. Kudlick, Richard Watson, and
Carol Guilbault.

REFERENCES

[1] (6AI) (6b4a8d) (6b4b2d) SRI-ARC. Online Team Environment / Network Information
Center and Computer Augmented Team Interaction. Augmentation Research Center.
Stanford Research Institute. Menlo Park, California 94025. 6-MAR-73. (13041,) *'■•

il] (6b4ald) (6b4b2d) No Author. DNLS ENVIRONMENT. Augmentation Research Center,
Stanford Research Institute, Menlo Park, California 94025. 16-JUN-72. (10704,)

[3] (6b4ald) (6b4b2d) No Author. FILES. Augmentation Research Center, Stanford Research
Institute, Menlo Park, California 94025. I6-JUN-72. (10705,)

[4] (6b4ald) (6Ub2d) No Author ADDRESSING IN DNLS - JUMPING AND LINKS.
Augmentation Research Center, Stanford Research Institute, Menlo Park, California
94025. I6-JUN-72. (10706,)

[5] (6b4ald) (6b4bzd; No Author. VIEW CONTROL OPERATIONS. Augmentation
Research Center, Stanford Research Institute, Memo Park, California 94025.
16-JUN-72. (10708,)

[6] (6b4ald) (6b4b2d) No Author. DNLS/EXEC. Augmentation Research Center. Stanford
Research Institute, Menlo Park, California 94025. 16-JUN-72. (10713,)

[7] (6b4ald) (6b4b2d) No Author. DNLS Prelimmary User Guide. Augmentation Research
Center, Stanford Research Institute. Menlo Park, California 94025. l9-jnN-72.
(10703,)

page 26 Knowledge Workshop Dcvclopmen» -■ Reponed as of 7/74

S?l ARC 30 JAN 7b 5 34PM 22133

1 Application Experience
6 Training and Development

;8| (6b4b2d) Susan R. Lee. Exrvise File for Text Editing (Network Version). Augmentation
Research Center, Stanford Research Institute, Menlo Park, California 94025.
26-JUN-73. (17352,)

[9] (6b4a4d) Marilyn F. Auerbach. Folklore. Augmentation Research Center, Stanford
Research Irstitute, Menlo Park, California 94025. l-MAR-73. (14771,)

[10] (6b4a4d) Varilyn F. Auerbach. DOCUMENTATION CHANGES. Augmentation
Research Center, Stanford Rocarch Institute, Menlo Park, California 94025.
5-MAR-73. (14890,)

[11] (6b4a5d) David H. Crocker. [Question about L10 Functions]. Augmentation Research
Center, Stanford Research Institute. Menlo Park, California 94025. 9.JUL-73. (17726.)

[12] (6b4a6d) Marilyn F Auerbach. NWG/RFC 496 #1 A TNLS QUICK REFERENCE
CARD IS AVAILABLE. Augmentation Research Center, Stanford Research Institute.
Menlo Park, California 94025. 5-APR-73. (15496.)

[13] (6b4a7d) Marilyn F. Auerbach. NWG/RFC 496 #1 A TNLS QUICK REFERENCE
CARD IS AVAILABLE. Augmentation Research Center, Stanford Researh Institute,
Menlo Park. California 94025. 5-APR-73. (15496.)

[14] (6b4a8d) (6b4b2d) N. Dean Meyer. Procedure for Sending Messages. Augmentation
Research Center, Stanford Research Institute. Menlo Park. California 94025.
ME.NLS;2,. (22893,)

[15] (6b4a8d) (6b4b2d) Jeanne M. Beck. Proced»' e for maintaining the Userguides directory
Augmentation Research Center, Stanford Kv earch 'nstitute. Menlo Park. California
94025. 9-MAR-74. (22363.)

[16] (tb4a8d) (6b4b2d) Jeanne B. North. Some Procedures for People Support of an Online
Information System. Augmentation Research Center, Stanford Research Institute.
Menlo Park, California 94025. 1I-SEP-72. (13037.)

[17] (6b4a8d) (6b4b2d) No Author. Technical Support for RADC Use of Augmentation
Technology. Augmentation Research Center. Stanford Research Institute. Menlo Park.
California 94025. 5-MAR-73. (14567.3)

[18] (6b4b2d) SRI-ARC Onüne Team Environment / Network Information Ccntei and
Computer Augmented Team Interaction. Augmentafion Research Center. Stanford
Research Institute. Menlo Park. California 94025. 6-r» ;R 73 (13041.)

[19] (6b4a8d) (6b4b4d) (6b4b4) Douglas C Engelbart. Richard W. Wa son. James C. Norton.
The Augmented Knowledge Workshop. In AFIPS Proceeai.:«s. Vol. 42. 1973 National
Computer Conference, pp. 9-21, 1973. (14724.)

[20] (6b4cld> Dirk H. van Nouhuys. NLS Continuing Education. Augmentation Research
Center. Stanford Research Institute. Menlo Park. California 94025. 12 JAN-73.
(13783.)

Knowledge Workshop Development - Reported as of 7/74 f-gc 27

- ■ -Jl^-i; -.

SRI ARC 30 JAN 76 5 34PM 22133

I Application Experience
6 Training and Development

[21] (6b4d4) Dirk K. van Nouhuys. Notice of NIC TNLS Course at SRI-ARC, 7-8 February
1973. Augmentation Research Center, Stanford Research Institute, Menlo Park,
California 94025. 10-JAN-73. (13755.)

[22] (6b4d4) James C. Norton, Richard W. Watson, Dirk H. van Nouhuys, Marilyn F.
Auerbach, Harvey G. Lehtman. Augmentation Research Center and Network
Information Center: Video Tape. Augmentation Research Center, Stanford Reseirch
Institute, Menlo Park, California 94025. Hard. (15365,)

[23] (6b4e4) Dirk H. van Nouhuys. Live at the ICCC/ A Video Tape. Augmentation
Research Center, Stanford Research Institute, Menlo Park, California 94025. Hard.
(15481,)

[24] (6b4e4) Dirk H. van Nouhuys. NLS-SCHOLAR: Current Status. Augmentation Research
Center, Stanford Research Institute, Menlo Park, California 94025. 3-AUG-73
(18201,)

[25] (6c3a3) Kirk E. Kelley. Status of SCHOLAR with respect to OfTice-l and NLS-S
Augmentation Research Center, Stanford Research Institute, Menlo Park, California
94025. 22-JAN-74. (21562,)

[26] (6c3ci) James H. Bair. The Basic TNL bourse. Augmentation Research Center,
Stanford Research Institute, Menlo Park, California 94025. COURSENSW.NLS:17,.
(22858,)

[27] (6c3dl) James H. Bair. The Utility Feedback Mechanism. Augmentation Research
Center, Stanford Research Institute, Menlo Park, California 94025 6-APR-74
(22642,)

[28] (6c3d2) James H. Bair. User Development Report: Training Tour I - 11 May 74.
Augmentation Research C?.;*.. r, Stanford Research Institute, Menlo Park, California
94025. TR!PMAY.NLS;7. (23133.)

[29] (6c3d3) James H. Bair. User Development Report: Training Tour 11 Mar - 20 Mar 74.
Augmentation Research Center, Stanford Research Institute, Menlo Park, California
94C25. 8-APR-74. (22656.)

[30] (6c3d4) James H. Bair. User Development Trip to Bcil Canada & ''re-application
Analysis. Augmentation Research Center, Stanford Research Institute, Menlo Park,
California 94075. 30-MAR-74. (22536,)

[31] (6c3d5) James H. Bair. Usei Development Trip to RADC 19 Nov 73. Augmentation
Research Center, Stanford Research Instit ., Menlo Park, California 94025.
30-MAR-74. (22535,)

p«,c28 Knowledge Workshop Devclopmenl - Reported a« of 7/74

i53=»^iwT-- r I J^

SRI- ARC 30 JAN 76 5 34PM 22133

Experience with an Online Feedback Mechanism
(by Susan R Lee and Kirk E Kelley)

INTRODUCTION

In order to better assess the new command language, Analysis has developed a procedure for
collecting and handling feedback rrom ARC users. Because the user group is of an experimental
nature, it has been possible to try several plans of collecting, organizing, and responding to the
data.

Data were collected both online and offline and data submitted online were submitted via the
Journal (recorded) and via Sndmsg (unrecorded). People were encouraged to, and in fact did,
send most items via the Journal. The Journal proved to be the best mcihod for collecting data
because the data arrived in an easily manipulated state and items were easily referenced and
retrieved when some action had been taken.

Several attempts were made to organize the data to enable different people to use the file for
various purposes. Different sections were organized chronologically, categorically, and
according to a set of priorities. Suggestions for future features were eventually organized
categorically to have similar and related suggestions in close proximity. Other schemes
fragmented the subject matter too much. Specific tasks assigned to a programmer were
ordered by programmer, since this section was used mainly by each individual. Pnorities
seemed to be too difficult to assign and keep up to date in this circumstance.

Response to users warrants more exploration; the two methods tried were offline (orally) and
online. Online responses were limited to notification when a bug had been fixed, answers to
specific questions, and notification that a suggestion had been rejected. Online responses were
most desirable because they did not disturb a person as an offline interruption did.
Furthermore, the responses were collected and easily accessible by all users, enabling those
who were curious to peruse the file and learn new things.

The method described below has proven to be both easy to use and helpful to people dealing with
feedback.

DESCRIPTION OF MECHANISM

Users are encouraged to r.ubmi» all comments online, using either Sendmail or Sndmsg. Reports
of bugs, suggestions for new features, and attitudes, both positive and negative, are solicited. All
such inputs are routed to a master file in the Feedback directory.

The information collected is organized into the following categories.

1) Unclassified Items (Sendmail automatically delivers items to this section.)

2) Bugs (reports of features that are not working as advertised).

3) Praise (features people like).

4) Future Needs and Possibilities (suggestions for new features and changes a) old ones).

Knowledge Workshop Developmcnl - Reported as of 7/74 page 21)

'^E!8*g"1"if'"'' III Hi II i niWWHBWWllililllllili|lli>r.li

SRI-ARC 30 JAN 76 5 34PM22133

I Application Experience
7 Online Feedback

5) Rejected Suggestions (suggested changes that Development has rejected). - '

6) Assigned Tasks (bugs or other suggestions assigned to a specific system developer-organized
by developer). b?t

7) Implemented Items (fixed bugs or implemented suggestions). * «

I'ems move from one section to another by the following algorithm. -'

1) Unclassified items are placed in one of the succeeding categories. s '•'

2) The bugs section is reviewed several times a week by a systems developer who assigns each
item to the appropriate person. ^

The bugs are then moved to corresponding sections under Assigned Tasks. -'-

3) The Assigned Tasks section is also reviewed periodically for completed tasks, which are
then moved to the Implemented Items section. "^

4) The Future Needs and Possibilities section is reviewed by Analysis approximately once a
month and a report is submitted to Development listing issues to be resolved and subsequently
either rejected or assigned to a person. -,;i

When action is taken on an item or when for some reason its status change*;, the user who
submitted the item is notified by means of an online message.

EXPERIENCE

The feedback mechanism has been used extensively and viewed positively, primarily because of
■ he knowledge that a problem submitted to the file will be considered and some response will be
forthcoming. Approximately 10 to 15 report^ a week have been received since January 1974.

System developers have found a list of complaints and problems to be an aid in scheduling work
and establishing priorities. The mechanism also seems to act as a buffer between developer and
user, softening the negative aspects of user frustration while still assuring that action is taken.

The database consisting of user inputs has proven to be a valuable source of ideas far
modifications to improve the command language and to improve the methods used for
accomplishing work. It is structured categorically to be of use during the design of future
command languages and subsets of command languages. Many problems encountered by a group
of people learning a new command language have been recorded and categorized. These should
prove helpful when the command language is introduced to other new users. '

An online mechanism such as this seems to be nost suitable for handling bugs and suggestions
for future changes. In both cases the user usually has sufficient motivation to make the effort to
submit the item. When a collection of attitudes and feelings is desired, especially positive ones,
the motivation level is low and an online mechanism is probably not as efTective as a method
involving personal interviews or questionnaires. —

page 30 Knowledge Workshop Developmeni - Reported as oi 7/74

Y- - -- -——

SRI-ARC 30 JAN 76 5 34PM 22i33

Chapter II: USER INTERFACE

Issues in the Design of the NILS User Interface
(by Richard W Watson)

INTRODUCTION

The user interface has two sides: the input side by which the user inputs information, indicating
by various conventions and controls whit he ^ •sh-s accomplished; and the output side by which
the machine provides feedback and other assist^.ce to the user in command specification, and
provides various forms of information portrayal. Man has many motor and other capabilities that
could be the basis for input and command specifications; similarly he has his full range of senses
that could be targets for system output.

To date, computer information systems make use of only a few motor and sensory capabilities in
their man-machine dialog. An important area of research involves exploring the advantages to be
gained and the techniques to be used to extend this range. There is interesting research going on
in areas of speech, eye movement, brain wave control, hand written scrint, and video graphics
that will undoubtedly be integrated into the truly multimedia systems tt be built in the near
future.

We call the user's collection of input-output equipment, and arrangement of woi!' tables and work
space, the workstation. At the present time, input centers around various typt, of keyboard
devices: standard typewriter-type, function button, keyset (chord), and graphical pointing devices
(mouse, electronic pen-tablet, light pen. joystick). The dominant output means are printers and
displays of varying c-ipabilities.

The present NLS user interface has been developel around this equipment, although many of the
principles used in its design can be easily extended for use with other media [3]. The prime
motivation for the use of the mouse for pointing and two keyboards (standard typewriter-like and
keyset) as the input devices for the display version of NLS-7 (DNLS), are described in references
[2][3]. NLS can also be used from typewriter terminals (TNLS). In this chapter, we
concentrate on describing some of the motivations behind the design of the NLS command
language and the forms of information portrayed to assist the user in command specifications.
Forms of general NLS information portrayal are described in reference [I],

NLS is a prototype collection of tools in a growing workshop of tools and services to aid
knowledge work [IX^J. and we expect the number of tools and vocabulary that controls their
use to grow. We further expect that the use of such a workshop will spread throughout 'hov:
occupations involved with information in various forms and that there will be infrequent ami
casual users of such systems, along with many people who will spend large fractions of their day
using such workshops. One goal is to match the speed of system responsiveness to the natural
speed and flow of man's thought processes. It is from these basic expectations that our user
interface work has developed The sections below enumerate several assumptions and areas of

Knowledge Workshop Dcvelopmcnl •• Rcporlcd as of 7/74 page 31

SRI-ARC 30 JAN 76 5 34PM 22133

II User Interface
8 Design Issues

concern around which the NLS user interfdce has developed to date. A key point to mention is
that we do not consider the NLS user interface a static, finished product. It will change, based on
analysis of usage experience, and the technology and media available. H*'

HIGH LEVEL ASSUMPTIONS UNDERLYING THE DESIGN OF THE NLS USER
»NTERFACE

First we describe a few high-level assumptions that affect the user interface design and then
discuss some of the lower level issues and the specific techniques used to deal with them. BB:

1) Coordinated Set of User Interface Principles 8!:->

There will be a common command interaction discipline, over the many application areas in
the workshop, that shapes user interface features, such as the language, control conventions,
methods for obtaining help, a.^d computer-aided training. e-*

This commonality has two main implications. One, it means that while each domain within
the core workshop area or within a specialized application system may have a vocabulary
unique to its area, this vocabulary will be used within language and control structures
common throughout the workshop system A user will learn to use additional functions by
increasing vocabulary, not by having to learn separate "foreign" languages. Two, when in
trouble, he will invoke help or tutorial functions in a standard way. »-■*■

2) Grades Of User Proficiency «" -

A once-in a-while user with a minimum of learning will want to be able to get at least a
few straightforward things done. In fact, even an expert user in one domain will be a
novice in others. Users will be clerical workers, information specialists, executives,
engineers, and others. Attention to novice-oriented and to tutorial help feature., is required, s» =

Users also want and deserve the reward of increased proficiency and capability from
improvements in their skills and knowledge, and in their conceptual orientation to the
problem domain and to their workshop's system of tools, methods, conventions, etc.
"Advanced vocabularies." short concise control notation and conventions in every special
domain will be important and unavoidable. ^ -

A corollary feature is that workers in the rapidly evolving augmented workshops should be
involved continuously with testing and training in order that their skills and knowledge may
most eflTectively harness available tools and methodology. ^ -4

3) Ease of Communication Between Subsets and Addition ot Workshop Domains stm:

One cannot predict which domains or application systems within the workshop will want to
communicate in various sequences with which others, or what operations will be needed in
the futun* Thus, results must be easily communicated from one set of operations to
another, and it should be easy to add or interface new domains to the workshop. A
corollary is that the total workshop may contain a very large number of tools and services.
Some users mav have access to only a subset of its capabilities while others will have access
to many or all capibilities. «s c;

page 32 Krtimiedgc Workshop Development - Reported as of 7/74

..^^^^^^i— ~—^ ft.-.-rr '——- -- --^^-^ -.^ - ^ ._ - _. , .^ - ^--^ _s—_ -^ ^- .-, inn-M i 'iTlrn-nT

SRI ARC 30 JAN 76 b 34PM 2?! 33

II User Interface
8 Design Issues

As described below, we expect the workshop to be embedded in a computer network and
thus communication between tools and between users must take place across both process
and host boundaries according to well specified conventions and protocols [5X6].

4) User Programming Capability Or User Interface Extensibility

There will never be enough professional programmers and system developers to build or
interface all the tools that users may need for their work. Therefore, it must be possible,
with various levels of ease, for users to add or interface new tools, and extend the language
to meet their needs. They should be able to do this in either a variety of programming
languages with which they may have training, or in the basic user-level language of the
workshop itself.

5) Range of Workstations and Symbol Representations

The range of work stations available to the user will increase in scope and capability.
These work stations will support text with laige, open-ended character sets, pictures, voice,
mathematical notation, tables, numbers, and other forms of knowledge. Even small
portable hand-held consoles will be available. The multiplicity of possible terminals indeed
raises the question of whether a consistent set of control and portrayal conventions is

As hardware decreases in cost, more and more capabilities will be placed in the work
station both in the form of user interface aids and facilities, and in the form of frequently
used tools.

6) Di- »ributed Nature of The User Interface Processes

The collection of facilities to support interfaces with the system of tools can be conceived of
as a single service as seen by the user. These facilities may all reside in a processor in the
work station or be distributed in two or more processors, depending on the level of their
sophistication and state of the art with respect to cost, hardware capability, and so forth

7) Tools Embedded in a Computer Network

The computer-based tools of a knowledge workshop will be provided in the environment of
a computer network, such as the ARPANET [7]. For instance, the core functions will
consist of a network of cooperating processors performing special functions, such as editing,
publishing, exchanging documents and messages, data management, and so forth. Less
commonly used, but important functions, might exist on a single machine. The total
computer-assisted workshop will be based on many geographically separate systems.

Once there is a "digital-packet transportation system," it becomes possible for the
individual user to reach out through his processor to other people and other services
scattered throughout a "community." The "labor marketplace" where he transacts his
knowledge work will be literally independent of geographical location.

Specialty application systems will exist in the way that specialty shops and services now
do-and for the same reasons. When it is easy to transport the material and negotiate the
senice transactions, one group of people will find that specialization can improve their
cost/effectiveness, and that there is a large enough market within read] to support them.

Knowledge Workshop Development - Reported as of 7/74 page 33

- - / .1 n

■■ . - I« |ll

SRI-ARC 30 JAN 76 5 34PM 22133

II User Interface
8 Design Issues

And, in the network-coupled computer-resource marketplace, there will be a growth of
specialty shops, such as application systems specially tailored for particular types of
analyses, or for checking through text for spelling errors, or for doing the text-graphic
document typography in a special area of technical portrayal, and so on. There will be
brokers, wholesalers, middle men, and retailers. 8t:3'

The key point to emphasize is that even when hardware costs decrease to the point where a
user can perform 90% of his work using tools md information that operate in the
processor in his work station, he will want to have access to a computer network lu.

a) Communicate in various forms with others
b) Access very large or special databases
c) Access special tools that run elsewhere «- ^

8) Problem Orientation of the Command Language and Tolerance for Ambiguity e^-

The user has a task that he wishes performed by the system. Depending on the nature of
the task and operations available to him on the system, he may be able to express what he
wants accomplished in a smgle "statement" or command to the machine, or it may require
a series of commands. 8 L —

One of the goals of the designers of the command language and system is to understand the
nature of the user's application domain so that the user can express his needs with words
that are similar to his natural problem solving vocabulary and language forms. The
machine should then break down the request into smaller steps as required. ^ ^

If there is ambiguity in the user's command, the machine should recognize it, if possible,
and piompt appropriately for clarification. There is still much research and development
required to fully meet this goal. ^ -1

Many people hope to allow novice users or users in certain applications to use natural
language in making statements to »he machine. This capability will require models of the
user and task domains for understanding. Bö:M

Even when systems are able to interpret commands given in natural language, the precision
and usage efficiency of appropriate artificial languages will make the latter's continued jse
preferable, especially for skilled users. «^k'

Given the above general considerations as background, we can move on to examine features of
the NLS user interface in more detail s =

MORE DETAILED DISCUSSION OF THE NLS USER INTERFACE *

A command language must allow unambiguous specification of what the user wishes
accomplished. The operation to be performed, and the entities or information items (arguments)
to be acted upon, or used to determine what is to be acted upon, must be specified. These can be
specified in a variety of ways: by typing them in in full or in some form of abbreviation, by
pointing at them on a screen, by pronominal reference, by implication from context, or by use of
default values where appropriate. The order of their specification, the symax or grammar of the
language, can have various forms. For example, operational command-words can be specified,
followed by the arguments, or vice versa. Arguments can be in fixed positions or explicitly

page 34 Knowledge Workshop Development -- Reported a* of 7/74

äMBMeBHBi

■

SRI ARC 30 JAN 76 5 34PM 22133

II User Interface
8 Design Issues

named and occur in any order. Some arguments or eommand-words ean be optional and require
special characters to indicate their presence. Arguments or command-words can have defaulted
values under certain conditions. Pronominal references can be allowed to refer to previous
occurrences. Arguments may be given types by the system and language designer for more
extensive error checking and feedback.

Arguments and keywords can be specified by complete or partial typein (there are a variety of
forms of command recognition that are discussed later) or designated by pointing to
representations on a display or by use of specially coded function keys. Or. the machine may ask
questions and the user just fill in the blanks.

Depending on the characteristics of the computer and communications system, it may or may not
be possible to provide command word or keywerd completion, prompts or other feedback,
argument checking, default value fill in, and so forth, during the command specifications.

For example, in line-at-a-time, half-duplex systems, the user usually must complete the entire
specification of the comma.id before transmission to the system, while in character-ai-a-time.
full duplex systems, the system can react to each character received and provide more extensive
aids to the user during command specification.

The above discussion outlines just a few of the many choices available *o the language designer.
As the purpose of this section is not to be a complete tutorial on all possible choices available and
thjir advantages and disadvantages, the following discussion gives only the main NLS command
language features and the motivation for their adoption.

THE NLS COMMAND LANGUAGE

The NLS command language generally has the following form, where angle brackets group meta
symbols:

< operation specification > < operand specification > < command completion >

The fields in a command are of a fixed order, although some commands have optional fields
that can be specifically requested. Other fields can have a system-supplied defauit value.
Because NLS operates from a character-at-a-time. full-duplex system, several levels of help are
available, as described later, for giving cues and prompts, explicitly listing options or syntax,
and giving full document^t:rr nu what the system expects next during command speufication.
It was not felt that much would be gained for novice users by allowing fields to be specified in
any order by using explicit field names. Novice users do not need to be aware of optional
fields.

As much as possible NLS makes »he operational specification of the form verb-noun followed by
arguments and possibly other keywords. We have also tried to maximize the fullness of the
verb-noun matrix.

This approach seemed to be natural, and follows normal English imperative forms to aid
learning. The choice of verb-noun form seemed to fall out naturally when considering such
important areas as editing. A given verb, such as DELETE, can naturally be applied to many
entities, such as statement (; paragraph, title, equation), character, number, text, file etc.
Learning is easier if the user can form a model of how the system works that can be

Knowledge Workshop Development - Reported as of 7/74 page 35

SRI AHO 30 JAN 76 5 34PM 22133

II User Interface
8 Design Issues

consistently applied. In this case, a user can learn n verbs and m nouns and understand that
generally, if it is meaningful, they can be used in pairs. Having learned n-j-m vocabulary
terms, he can apply them in the form of n x m commands.

We have tried to pick command keywords that have normal usage related to the operation
described. A synonym capability would be easy to implement.

Four forms of command keyword recognition are provided to enable the user to choose the one
most appropriate to his terminal type, system response, previous system experience, and present
NLS experience !evel. We have worked to pick an operational vocabulary for the present system
that guarantees keywords to be unique in a maximum of three chara Jters:

1) A single-character mode allowing high-speed single-character recognition of the most
commonly used commands; less commonly used commands require an escape character
followed by enough characters for unique recognition: With large and expanding command
sets one cannot choose keywords with mnemonic value and guarantee uniqueness with the first
character. This mode is generally preferred by experienced users because of the simplicity and
speed with which frequently used operations can be expressed. We find that experienced users
are very concerned that commands be formed with the minimum number of input operations,
and that commands have the richness needed to specify adjective or adverb type operations as
needed. There is thus some conflict in certain commands between these goals for the
experienced user and the need for command simplicity for the novice.

2) A demand mode requiring a right delimiter to initiate recognition: This has proved 10 be
popular for new users of typewriter terminals, particularly ihose with experience using the
TENEX operating system.

3) An anticipatory mode requiring the user to type enough characters until the rommand is
uniquely specified; the system then automatically fills in the remainder.

4) A fixed mode that guarantees recognition on entry of three characters.

Given the implementation approach outlined later, it is quite easy to add other recognition
modes, such as allowing the user to choose keywords from a menu displayed on the screen.
However, experiments have shown that the time it takes to point a! some item on the screen is
equivalent to several keystrokes and thus would be disadvantageous to skilled users, although
possibly of value to novices [2j[3].

Modes 3 and 4 have not turned out to be heavily used.

Operand argument specification is contained in a number of fields that are v. riable with the type
of command. All commands of a similar type have had the order of the operands made as
consistent and as natural (relative to normal English usage) as possible. Infrequently used
operand fields are optional and novice users need not be aware of their existence.

Related to argument specification is the problem of choosing argument delimiters. One can
recognize the following delimiting functions.

1) Delimiting command words
2) Delimiting arguments
3) Delimiting optional arguments, selection type, or command word field.-»

page 36 Knowledge Workshop Devclopmenl - Reported as of 7/74

—'—-^ ■■"^

- -. -—T-^.rr-.-..^^^- ; y^mmmmamm.

SRI ARC 30 JAN 76 5 34PM 22133

II User Interface
8 Design Issues

4) Delimiting eommands
5) Seleetmg arguments off a display screen, and confirming the selections ^;j

One could choose separate characters (codes) to represent each of these functions. To do so
seemed to us to add an unnecessary complication for the user and so, except for using a
special character to indicate an optional argument, selection type, or command word, a single
jode is used for the other function in NLS. We call this code "Command Accept" (CA) even
though it is used for other purposes as well. The system allows the user to define which
keyboard character is to serve this function if he finds the systen: default to be inconvenient.
One of the buttons on the mouse also serves this function. ^ : ■

Arguments can be typed in, defaulted where appropriate, or specified by pointing to
appropriate entities on the display screen. S3 :

There are three flavors of command completion. **

1) Completion of the command indicating execute the command and return to the base state to
await input of the next command: The default indication for this form is one of the buttons
on the mouse in DNLS, which is translated into a control character. Command completion is
defaulted to be CR in TNLS. The use of CR in TNLS is quite natural and generally does not
conflict with textual input as most text in NLS is typed in without explicit CRs and is
appropriately formatted by the system for various output devices. If the TNLS u>er wishes to
input an explicit CR in his text file, he must precede it with an escape character. If he has
need (O enter many CRs in his text string, he can redefine the completion character. Command
Accept, to be some other charx'er. ^s«

2) Completion of the command an^ return to an appropriate point for quick repetition of the
command. Repetition mode continues until explicitly commanded to delete out of it. This
mode is very useful when a delete or other operation is repeated several times. «--^

3) Completion of the command and entry to insert-statement mode for addition of new
paragraphs or other text statements: This mode is like comnv nd repeat above except *hat it
always takes you to the insert command. It is used frequently when one adds, replaces, or
moves text, and then wants to follow it with new statements. It speeds text input when
inserting sequences of paragraphs. » ='

The system is to be used from a variety of terminal types, including both typewriter-type
terminals and displays. The two-riimensional displays are to be the preferred worl: station types
whenever a design decision must be made between language forms possibly favoring one type or
the othei. H —

It was decided to make the command language syntax for the typewriter (TNLS) version and
the display (DNLS) version as close as possible, except where the difference between the
one-dimensional and two-dimensional media clearly prohibits this or would seriously limit one
or the other version. This decision was made to allow people working in environments
consisting of both typewriter and display terminals to be able to move back and fo th with
ease. «3 =..

Knowledge Workshop Dcvclopmcnl - Reported as of 7/74 page 37

l—'Mf-rt-MMä

SRI ARC 30 JAN 76 6 34PM 22133

I! User Interface
8 Design Issues

The system has been organized into clearly defined subsystems with uniform rules for their entry
and exit. Any subsystem can be entered from any other, either to "execute" a single command
with automatic return or to perform a chain of commands. The user ran return, either to a
specifically named subsystem in the path of subsystems traversed or enter a new subsystem. The
issue of how to group commands into subsystems has to do with training and patterns of use
rather than system constraints. It relates to learnability and, to some extent ease of command
specification using single characters, and to "knowing where you are" in a command or
operational space.

One could construct a system where all commands were in a single subsystem. Study of the
command set of a large system particularly conceived of as a set of tools shows that operations
temi to group together such that to perform a given task, such as sending a message or
'\:.culating a budget, generally require several related suboperations. Certain operations, such
as moving in information space or seeking help, tend to be used as suboperations of many or
all tasks. This latter observation » led to "universal" commands available from within any
subsystems. One can also imagine certain commands to be needed frequently in just two or
more subsystems and thus implemented in each subsystem having the need. There are now no
instances of t lis case in NLS. The ability to execute a single command in another subsystem
with automatic return has been very useful.

Provision has been made for options the user can control as he wishes for the amount of
prompting, feedback, and for setting other user interface parameters whenever it seemed a
standard interface might not be appropriate to some significant class of users.

A mechanism is implemented that enables the user, or someone acting in his behalf, to create a
file stating what options he wants to run with. The system thereafter automatically sets these
options when he enters. This facility can also be used with small extensions to subset
commands. This user option capability, when coupled with the ease by which the user
interface can be redefined using the Control Meta Language described below, makes possible
tailoring the user interface to specific users or groups of users.

All operations that have a natural inverse command have been given one (although NLS still does
lot have an "undo" facility). A general undo/redo facility has a number of technical difficulties
and its value can be questioned. However, the ability to undo or redo the list one. two, or three
commands would clearly be useful.

User Programming: As indicated earlier the ability of the user to extend the system himself is
important. There is a tradeoff between ease of extension specification and operational efficiency.
In providing such a facility one does not have to be deeply concerned with efficiency if the task
handled by the extension is performed infrequently. If the operation is performed frequently, then
it should probably be inserted as a system feature and implemented efficiently by professionals.
This area is ripe for much additional development. The extensions r.usl be specified in some
language to indicate what sequence of events is to take place, what arguments to collect, and so
forth, when a given user action is performed.

NLS now offers two forms of extensibility. The first allows users with some basic
programming knowledge to write programs in the Algol-like LIO language in which the system
is implemented, calling on NLS system primitives as needed. They can us»* the Control Meta

page 38 Knowledge Workshop Development - Reported as of 7/74

- T - — i^-.

SRI ARC 30 JAN 76 5 34PIVI 22133

I! User Interface
8 Design Issues

Language to specify a user interface if desired. These programs ean be installed by the user as
one of his default subsystems, loaded as subsystems as needed, or used as eontcnt analyzer
patterns [8]. HJ ■>

The user ean also write sequenees of NLS eommands and have these sequences executed at
will. A specific sequence of commands can be automatically invoked when the user first enters
NLS. B3::r

HELP, STATUS, AND PORTRAYAL FACILITIES

Let us now consider each of the information spaces and the type of feedback, help, and other
status information available to the user. ^

The user interface must implement a man/machine dialog. In this section, we discuss issues from
machine to man. The discussion centers around the use of displays, with comments on how the
problem is dealt with for typewriters. Let us examine some of the types of information that the
user needs in order to keep his bearings. Be.

There are three main areas or dimensions along which the user needs information to help him a)
to know where he has been, b) to know where he is, and c) to know where he can go from here.
Clearly the command language and user interface must offer provisions to move in these spaces as
well as obtain status. Hr<

1) Information Space
The user needs to know where he is in his infoimation space, and what view or portrayal of
;he many possible is being displayed to him. Gcerally he arrived at his present position from
previous points and he may want to be able to backtrack to previous points or views as well a,
to move on. Be?s

2) Subsystem or Tooi Space
In workshops containing many tools and commands, the user needs to know which tool is
active and possibly needs to know which ones he was in previously and their order, and which
ones he can enter from here. e^u

3) Command Syntax Space
During the specifications of a command, the user may need to know what he can or is
expected to do next and how to back up to a previous point. ►" '

The NLS display screen is organized into windows as described in some detail in [9]. These
windows are arbitrary rectangles. Windows can be displayed essentially all the time or overlaid
with others. Windows can grow dynamically. Some windows are allocated and displayed or not
displayed under system control for status and feedback information. Others can be created and
manipulated by the user for display in his information space. With typewriter terminals, one does
not have this two-dimensional random display capability and while the same information can be
given to to the user, less can be given automatically or at least must be given in an altered form. »•■:

1) Information space «e-J»

The present NLS information space is hierarchically organized. A user has a directory or
directories within which there are files. A file can contain notes on many subjects stored

Knowledge Workshop Development - Reported as of 7/74 page 39

—' ■■-•■-- -

_-::r---:n-i»TV.-imr^^^*"''--°^^^^fr'~J^"'''' T ' "'" "r~"T"

SRI ARC 3Ü JAN 76 5 34PM 22133

11 User Interface
8 Design Issues

under various headings, his mail, or single documents. Files in turn are hierarchically
organized as a tree of information nodes (now text strings but soon to be generalized to
include illustrations and other entities). '

Files can contain cross citations to specific points within other files or the same files, thus
creating networks. NLS has appropriate commands for moving within and between files
and for obtaining a display of the path over which one has traveled and commands for
backtracking along this path [1]. '

Display screens have a limited number of lines within which to display information, and
typewriters, even at 30 chars/sec or higher, cannot quickly and easily print out large
documents. Also, the user often wants to see a summary or overview of a document or
have it formatted in special ways to aid his understanding. To meet this need for easy
control of information portrayal, NLS has a concept called "view specification." The user
can change his "view" within the commands for moving in information space or by
separate command. So that he can be reminded of hi«» current view, the most commonly
used view parameters are fed back to him in a small window in the upper right hand
corner of the screen. When he is at a point in a command where it is permissible to
change views, this fact is fedback both by prompt (if prompts are turned on) and by
enlarging the characters in the view-feedback window. For more discussion on moving,
viev^ng, and portrayal in NLS see [1][4].

2) Subsystem or tool space

NLS is viewed as a collection of tools (subsystems) that can be used cooperatively or stand
alone. Each subsystem contains a number of logically related commands and has a name,
such as Base (the collection of editing and file manipulating commands). Calculator, etc.
All the tools work on information in the same file siruciure and the user can move from
one tool to another, or execute commands on a single command basis in any tool from any
other tool, as mentioned earlier. The user can receive a display of subsyf.tems available to
him or an ordered list of the subsystems in which he has previously been.

The name of the current subsystem within which he is operating is fed back in a small
window in the upper left hand corner of the screen in DNLS and as a four-character
prompt in TNLS.

3) Command syntax space

There are several levels of feedback and Help available to the user in formulating a
command to the system (15). Each is described below. The Help database clearly is also
generally useful for understanding the system as a whole.

a) Command-word recognition:
The options here were described earlier and this mode is primarily useful in minimizing
keystrokes and in triggering additional feedback.

b) Noise words:
When the system recognizes a command-word or field it geneiates what we call "noise
words" set off in parentheses so the user can distinguish between what he has input and
what the system has added. The nois? words aid the user in remembering what to do next.

page 40 Knowledge Workshop Development -- Rcpoilcd as cf 7/74

■T-T TYT- -«T - rgTTn-ir-gr.Tm „Mi

SRI AKl JÜ JAN '6 b.^f-'M/Ji

II User InterlaCv-
S Design IS^JC?»

Novice users report IHM: noise words are one of the most useful initial aids. As more
experience is gained, the other aids take on more inipcrtance. This is an important point to
note: users ai different levels of experience value different forms of feedback Usefulness is
not onl> determined by the inherent characteristics of the aids, but also, b> how thes are

implemented.

c) Prompts:
When the user completes the specification of a field in a command, he is prompted with
some terse characters indicating the type of thing expected next and the alternatives
available to him fot specifying, selecting, or addressing the needv d argument Users can
turn prompts off. which som- users of TNLS do when they reach a certain level of
proficiency, although many highly skilled users always operate with them on. DNLS users
tend to always operate with them on because the high speed of iK1 display does not slow
down work while providing useful information. Users can also specify terse prompting in
which case optional fields are not prompted for Beginning users have indicated that
prompting is useful, but would like prompts to be more mnemonic and of English type and
word length

d) Next Options and Syntax:
If the noise words and prompts are not sufficient to jog a user's memory aoout what
options are available to him next, he can strike a ., or a < Control-S > . If he strikes a ?. the
system displays, in alphabetical order, all the command-words that are legitin. te for the
next field or more extensive information than is available in the prompts for other fields. If
he strikes < Control-S >, the system prints out the syntax of the command from his present
position to the end of the command. The ? facility is extensively used and is very useful in
refreshing one's memory about infrequently used commands or new commands for a user
with only a basic knowledge of command system concepts and vocabulary. The
<Control-S > feature does not seem to be extensively used at present and may indicate that
the ? facilitv is sufficient.

e) Ho. Data Base:
If the above facilities are not suffiaent because of uncertainty about a basic co.icept or
vocabulary word or the user wishes more mformation about the effects or use of a
command, he can enter the the Help tool. Entry can be from the basic command level or
from any poin. during command specification. In the latter case, the system utilizes the
information Inpi't at this point to take the user to an initial pom» that describes the
command and fiell where he is located. (15)

Once in the HHp Database, a simple set of command rnnventions and the organization of
the database allow the user to easily move to reference related subjects or move to new
subjects or back up k higher level descriptions (15).

f) Active Tutorial Help:
The next level of Hein facilitv would be an active tutorial facility. We have not vet
implemented »uch a facility but can see its value. An example of such a facility is the woik
going on at BBN on the NLS-Scholar system [10]

Knowledge Workshop Devefopmtnl - Reported as of 7 74 page 41

l " l "Wll "'"

■ ■

SRI AR(. 30 JAN 76 5 i4PM 22133

11 User Interface
K Design Issues

ER (OR MESSAGES AND RECOVERY

Error messages indicating an incorrectly spelled file name or improperly specified entity are
fed back to the user in a window at the top of the screen. The user is left at an
appropriate point within the command specification or where necessary he must start over
again to respecify the command. The text of error messages is important and should be as
specific to the problem as possible This has implications within the system design fur
trapping error conditions as early as possible and determining the appropriate message for
the specific error and totJ context of the user. While we have made progress in »his area,

there is much more that could be ci-me ♦) meet the need stated above.

There are now no automatic error correction mechanisms built into the system, such as
spelling correction or "Do What \ Mean" type facilities. These would probably be useful
to add when resources permit

EDITING AND BACKUP DURING COMMAND SPECIFICATION

The user can perform certain simple editing and backup operations during command
specification. A' ny point during command specification he ran do a "command delete."
which will lake mm back U *he basic command level. This is useful if he gets confused
and wants to return to a known state or changes his mind about which command to
perform next.

The user can delete the last character input or last selection made on the screen with a
backspace character" keystroke or button push on the mouse. He can repeat this process

and continue the incremental backup proces:: to the basic command state.

He can also delete the last word input, or the field specified to date, with a
"backspace-word" keystroke or button push on the mouse He can also repeat this process
backwards to the basic command state as well.

IMPLEMENTATION

The mechanisms and databases needed to implement the user interface have been
modularized and isolated as a "Frontend" that can run on a separate computer, such as a
mini-computer close to the user, and communicate with the basic tool information
processing routines ("Backend") over a communication network The Frontend consists of
terminal handling capabilities [9], a command language interpreter (^), and two databases
a Grammar representing the language syntax and noise words; and a User Profile indicating
how the user wants various parameters set for him, such as his prompt and command
recognition modes, keyboard key translations, etc The Grammar is generated from a
high-level description of the user interface written in a language special for this purpose we
call Control Meta Language i^K).

Given this particular system organization it is very easy to tailor, subset, or modify the user
interface for individuals or groups, or to create interfaces for new tools.

Furthermore all the levels of help information, except the Htlp Data Base, are derived from
the Grammar, which guarantees their correctness as the system changes and is debugged
Various forms of hard copy documentation, such as command summaries, are also derived
from the Grammar representation.

page 42 Knowledge Workshop Devdopmenl -■ Reported as of 1/14

^^

■" «IM

SRI ARC 30 JAN 76 5 34PM 22133

II User Interface
8 Design Issues

ACKNOWLEDGMENTS

The NLS user interface has evolved over many years and reflects thousands of console hours of
user experience. Contributions have been made in this area by many members of the ARC staff
during this period.

REFERENCES

[I] {rtA4) (8A5) (8e4a2) (8e4a3) Douglas C. Engelbart, William K. English. A Research Center
for Augmenting Human Intellect. In AFIFS Proceedings. I%8 Fall Joint Computer
Conference. Vol. 33, Part I. p. 395-410, l%8. (3954.)

[2] (8A4) (8DJE) William K. English, Douglas C. Engelbart, Melvm A. Berman.
Display-Selection Techniques for Text Manipulation. In iCF.E Transactions on Human
Factors in Electronics, Vol. HFE-8, No. I. March 1967, p. 5-15. (9694,)

[3] (8A4) (8D3E) Douglas C. Engelbart. Design Considerations for Knowledge Workshop
Terminals. In AFIPS Proceedings. Vol. 42, 1973 National Computer Conference, pp.
221-227, 1973. (14851.)

[4] (8AJ) (8e4a3) Douglas C. Engelbart, Richard W. Watson. James C. Norton. The
Augmented Knowledge Workshop. In AFIPS Proceedings, Vol. 42, 1973 National
Computer Conference, pp. 9-21, 1973. (14724,)

[51 (8BIC2) James E. (Jim) White Version 2 of the Procedure Call Protocol (PCP).
Augmentation Research C nrc., Stanford Research Institute, Menlo Park, California
94025. PCP-COVER.NLS;5,. (24590,)

[6] r8BlC2) Jonathan B. Poste! and James E. (Jim) White. Notes on a Distributed
Programming System. Augmentation Research Center, Stanford Research Institute,
Menlo Park, California 94025. 21-MAR-75. (25613.)

[7] (8B1GI) Lawrence G. Roberts and Barry D. Wessler. (University of Utah, Computer
Science Department). The ARPA Network. Advanced Research Projects Agency,
Information Processing Techniques. Washington. DC. MAY-71. (7750.)

(8J (8dl0a) N> Author. L10 Users' Guide: Content Analyzer. Augmentation Research
Center, Stanford Research Institute, Menlo Park. California 94025. L10.NLS;7,.
(24426,)

[9] (8e4) (8e4HI) Charles H. Irby. Display Techniques for Interactive Text Manipulation. In
Proceedings of the National Computer Conference. 1974. p. 2^7-255. (20183.)

[10] (8e4c6) M. C. Grignett: et. al. An Intelligent Online Assistant and Tutor-NLS Scholar.
AFIPS Conference Proceedings. Vol. 44. Anaheim. California. MAY-75. (25054.)

Kmmlcügc Workshop Devetnpment •■ Reported as of 7/74 page 4}

SR! ARC 30 JAN /6 5 34PM 22133

A Command Meta Language for NLS
(by Charles H Irby, Charles F Dornbush, Kenneth E Victor,

and Donald C Wallace)

CON FROL META LANGUAGE - CML

INTRODUCTION AND MOTIVATION

To facilitate the easy formal description, implementation, and modification of the user interface
to a range of interactive application programs, the Augmentation Research Center (ARC) has
developed the Control Meta Lan^-age (or CML). This was an outgrowth of earlier efforts to
accomplish the same goals at ARC [I1[2H3][4][5].

The goals of this development were the following:

1) Provide a means for easily changing and experimenting with the user interface to an
interactive application program. •> -

2) Allow for the independent manipulation of -

a) the commands available to the user and

b) the interaction methodology and techniques that are used to specify commands.

3) Provide builders of new interactive application programs with a facility for easily
creating the user interfaces for their new programs. "*• = '

4) Provide the user with consistent and coherent command language features across a
collectior .f application programs, or what might be termed "tools." ' ^

Independent of the tool to which the user is giving commands, he does so using the same
methods for specifying which commands he wishes executed, the same methods for
specifying arguments or parameters to commands, gets the same type of prompting and
requests help in the same way, always. In addition, the general syntactic form(s) of
commands should be the same from tool to tool unless «here is good reason for the tool to
deviate from the standard. Of course the particular commands and vocabularies will vary
with the tool and in fact the same verbs may be used with quite different semantics in
different tools, but at least most other aspects of the commanJ language (including asking
for help and being prompted for the proper type of input) should stay the same across loci
boundaries.

5) Provide tools with well-formed commands J

Many operating systems and application programs have elected to use half duplex,
line-at-a time terminals because of the increased computer efficiency provided by this
approach. Other operating systems and application programs have chosen, instead, to
utilize character-at-a-time full duplex terminal disciplines because of the opportunity this
provides for utilizing a more human-engineered command language.

Preceding page blank
Knowledge Workshop Dcvclopmcnl -■ Reported as of 7/74 page 45

SRI ARC 30 JAN 7b 5 34PM ?; .33

II User Interface
9 Command Meta Language

The CMI. system Is an attempt to combine these two approaches into a
COMMAND-AT-A-TIME system, where the application programs do not directly interact
with the terminal, but rather receive fully specified commands from the Frontend. At the
same time, the CML interpreter will attempt to provide the user with the best possible
human-engineered command language discipline.

Although initially this wa; done by issuing direct procedure calls on tools (requiring that
tne CML interpreter and tools be written in the same language and link-loaded together), it
is proposed that this eventually be done by issuing "remote" procedure calls to "external"
procedures in the tools to actually execute commands. This will be accomplished through
the Procedure Call Protocol [6].

6) Provide a terminal-independent interface to the tools.

Because the CML interpreter handles all terminal interaction, it will present to the tool a
small number of virtual terminal classes. Thus, once a tool is developed, little attention
need be given to the type or particular characteristics of the terminal the end user may
choose to employ while using the tool. In fact, the cost of creating new tools should he
considerably reduced because of these facilities.

This means that even though the creators of a tool envisioned the user sitting at a
typewriter terminal, the user who happens to be using a display terminal with a pointing
device may be able to interact with the tool in a two dimensional sense, pointing to
arguments on his screen instead of typing them.

For tools which wish to make more extensive use of a display terminal if the user has one,
the CML interpreter presents primitives for allocating windows on the display and allows
the tool to write/delete/move/make invisible items displayed within the windows.

7) Make asynchronous operation possible.

In some instances, it may be possible for the execution cf the user's commands to be
accomplished in parallel with subsequent command specification and execution. This frees
the user to do other things while a lengthy command is being executed by a tool.

8) Provide standard mechanisms for presenting status or error conditions to the user,

an error should consist of the following;

a human-readable error message

a code indicating whether this error caused the command to be aborted, completed or
undefined and whether the tool is now in a state to receive more commands or should be
restarted.

9) Provide the user with enhanced, consistent help facilities while ireing any such too*

10) Allow for a common statistics gathering point for analysing user interaction
characteristics such a.-. Tror rates, frequency of issuing given commands or groupings of
commands, and average user-observed execution times for commands.

11) Provide a convenient way of subsettting the commands available to the user.

page 46 Knowledge Workshop Development -- Reported as of 7/74

SRI-ARC 30 JAN 70 5 J4PM 2?1 i3

II User Interface
9 Command Mcta Language

In the current case, a hypothetical computer was postulated that had as primitives instructions
that interacted with a human user. A "program" for this machine forms a tree-like data
struc.ure, that we call a Grammar. The two addresses of an instruction are called the
"successor" and "alternative" addresses. The successor address points to another instruction
to be executed if this instruction succeeds (i.e., is "TRUE"). The alternative address points to
another instrucHonCs) to process in parallel with this one. That is, a numbe- f instruction«!
are processed in "parallel" such that when any one of the instructions in the current set of
alternative instructions succeeds, then the Program Counter is advai.red to its successor. That
instruction and its alternatives are then processed.

At any point in time, the machine is attempting (presumably by interacting with a human
user) to choose a path through the tree. An illustration might be helpful here. At a certain
point in time the Program Counter might point to an instruction to recognize a command
word, a "reserved" word in the command language. This instruction might have alternatives
which are attempting to recognize other command words. These command words might
represent the verbs of commands the user can give to the system or might represent
refinements to a command already partially specified. The machine picks a path through these
alternative command words, although how this is accomplished is left purposely unspecified.
For it is precisely the "HOW" of this machine's path finding thit embodies the human-factors
considerations and human-machine interaction disciplines, which can, and in our case do, vary
from user to user. Thus, how the system interacts with the user is independent of the
commands the user has available -- one can be changed while the other remains constant.

Given the existence of the model for this hypothetical machine, we then developed a formal
language (CML) and compiler for this machine. It h with this formal language that the staff
of ARC now specifies the user interface for the NLS Knowledge Workshop tool system [2]
we have been developing for several years. The form of this language is the chief topic of this
paper. The object code produced by the CML compiler is called a control language grammar
(or simply a Grammar).

We have developed and used for several months (on a production basis) a simulation of this
computer which we call the Command Language Interpreter (CLI). Embodied in this
implementation are the principles for human-computer interaction that have evolved through
many years of usage and evaluation of NLS and other systems.

It is this interpreter that interacts with the user to help him specify commands for the system
to execute. It prompts him for the type of input required (if the user wants it to), shows him
the syntactic form of specific commands on request, shows him his actual alternatives at any
point in the specification of a command on request, and can invoke a semantic help facility if
the user requests. This semantic help is derived from a structured database provided by the
implementers along with the user interface (CML description and grammar) which attempts to
describe in English ;he intended use of the various commands and the tool as a whole. This
database is highly structured to allow the user to get the information he needs quickly without
wading through pages of output (8,15).

Thus, a tool now consists of three parts: 1) a CML description of the user interface, 2) a
semantic help database, and 3) an execution module that carries out the commands specifiable
by the user.

Knowledge Workshop Development - Reported as of 7/74 page 47

^

IBZL

SR! ARC 30 JAN 76 5 34PM 22133

II User Interface
9 Command Mela Language

To allow the user interface to be individually tailored, we have added a database calle 1 the
"user profile" whi:h describes lo the CML interpreter how much prompting and feedback the
user wants, what recognition scheme he wishes to use to select command word alternatives,
and many other idiosyncratic features of the user interface (8). There is a special set of
commands for modifying this database and consequently the behavior of the system.

And finally, to facilitate user analysis, we have added a user statistics database in which the
interpreter can record which commands were used, whether or not errors were made in the
specification of the commands, the execution time of the command, and other statistics.

We are now involved in a second generation CML system which will provide a Frontend
system for the National Software Works (NSW) program sponsored jointly by ARPA and the
Air Force. In this second generation system the execution functions that implement the
semantics of the commands are called through the Procedure-Call Protocol (PCP) and the
Multi-Process Support System [6]. Thus, unlike the current CML system, the execution
functions may be written in any language which can be interfaced to PCP. In addition, certain
aspects of the language will be improved as discussed in the conclusinns below.

The intention with the NSW system, as with NLS. is io provide the user access to a number of
general or specialized tools in such a way that the command discipline he uses remains
constant even though the particular vocabulary changes from tool to tool as appropriate to
describe that tool's functions. In the case of the NSW and for future releases of NLS, this
user interface will reside not only on a PDP-IO but will also be available on u dedicated
Frontend computer (PDP-11 or other mini-computer) for better responsiveness and less
expense. We anticipate that heavily used tools or commands will, in time, actually be executed
in the Frontend computer. In addition to increased system responsiveness, this will reduce
network communication and will afford users a certain amount of insulation from network or
large-computer unavailability.

As described above the Frontend system consists of the following:

1) A formal language (CML) for specifying NSW user interfaces

2) A compiler for that formal language that runs under TENEX as a subsystem or from
NLS

3) Tool grammars, products of the CML compiler or any other such program

4) A CML interpreter that processes a CML grammar in order to work with the user in
specifying syntactically correct commands to the NSW.

5) A user profile database that is used by the CML interpreter while interacting with the
user. This database allows the Frontend to be tailored »o the individual preferences of the
users.

6) A user statistics database, where, if desired, statistics can be accumulated on commands
used by a user, error rates, etc.

7) Access to a semantic help tool which is employed by the Frontend when the user
requests semantic level help with a tool or a command. It is presumed that each tool, in
addition to supplying the Frontend with a grammar will also supply it .vith the name of a

page 48 Knowledge Workshop Developmcnl - Reported as of 7/74

SRI - ARC 30 JAN /b b 34PM 22 1 33

II User Interface
^ Command Meta Language

help database whose structure and content, as with <he grammar, are the sc le responsibility
of the tool builder/supplier.

This help tool could also be kept informed of the user's dialog with the Frontend and could
have access to the tool grimimar, the current pars:; state of the user, and the user's profile.

The rest of this section describes in more detail the Control Meta Language and the CML
interpreter.

As discussed above, the Control Meta-Language (CML) is a vehicle for describing the syntax
of the user interface tJ application programs. The syntax is described through the tree-meta
alternation (denoted by /) and succession (denoted by juxtaposition) concepts
[7][8J[9][10]. The semantics are introduced via built-in functions, semantic conventions,
and parse functions.

No attempt is made to allow for the full semantic description of any command via CML, but
it is: hoped that the Frontend interface (parsing and feedback operations) may be explicitly
accommodated with these facilities. It will si ill be necessary, and desirable, to use execution
functions to perform the low-level semantics of the command. We call the collection of these
execution functions and their support routines and data structures the tool "Backend." The
CML describes how the command "looks' to the user, rather than what it does inside the
tool.

The CML supports zero look ahead, phrase structured context free control languages.

USE OF CML

The user interface for a tool is defined in the CML specification language. This CML
"program" i.> then compiled by the CML compiler (written using ARC's tree-meta compiler
compiler system [9][10] to produce object code (called a Grammar) which is interpreted by
a Control Language Interpreter (CLI). The Control Language Interpreter is cognizant of the
device dependent feedback and addressing charae'eristics of the user's terminal through an
appropriate interface to a terminal control module described in [11].

SYNTAX NOTES

The following meta symbols are used in this discussion of the CML:

ID An Identifier

SR A quoted string.

$ Zero or more occurrences of 'he following element.

/ Denotes alternatives. A/B means A or B.

At least one occurrence of the following element

Vf Brackets comments

() Used for grouping to control precedence.

[] Used to denote optional elements.

Precedes literal characters.

Knowledge Workshop Developmenl - Reported as of 7/74 page 4^

- - -i r-i r—
i f f-Tl

SRI-ARC 30 JAN 76 b 34PM 22133

II User Interface
9 Command Mela Language

Encloses literal strings.

#<...> At least one occurrence of the following element, separated by whatever ...
represents.

$<:...> Zero or more occurrences of the following element, separated by whatever ...
represents.

ELEMENTS OF CML

PROGRAM STRUCTURE

The basic compilation structure of a CMI program is described by:

file = "FILE" ID $dcls Srule #subsys "FINISH";

Explanation:

The "file" construct brackets the definition of control language subsystems.

Declarations of variables, execution and parse functions, and external identifiers may be
made at this level. In addition, global parsing rules may appear here and be invoked in
commands by simply specifying their names.

subsvs =

Explanation:

"SUBSYSTEM" ID % subsystem handle %
KEYWORD SR % recognition string Vr

#(command / rule) "END.";

The 'subsystem" construct brackets a set of rules or commands (gene^lly a set of related
commands that the command language designer wants to cluster together) Commands
beginning with the command-word COMMAND are linked together to form a command
language subsystem.

command -

rule =

Explanation:

(COMMAND" / "INITIALIZATION /
TERMINATION" / "REENTRY") rule ;

ID- exp

The subsystem may include a rule preceded by the reserved INITIALIZATION or
TERMINATION. If specified, these rules will be executed once upon subsystem
initialization/termination, respectively. This enables, for example, a tool to open and

itialize a work file when it is started and to close it after the user's last command has
been issued.

The subsystem may include a rule preceded by the command-word REENTRY which will
be executed upon reentry in the subsystem after executing commands in other subsystems.

The command Language Interpreter allows the user to freely move among subsystems.
Thus, the user may give commands to one subsystem for a while, then give commands to
another, and finally return to the first. The REENTRY rule will be executed when the

page 50 Knowledge Workshop Development - Reported as of T/74

iriMTTrt ----..- -fffir^r

- •

S1' ARC JO JAN 76 5 34PM 2.'133

II User Interface
9 Command Mela Lunguagc

user resumes g'ving commands to the first subsystem. This might be necessary, (or
example, to ensure that a work file or data structures were still in a consistent form.

Each rule/command is named with an identifier. This name may he used as a term in any
other rule, indicating that the named rule is to be invoked at that point in the parse.

DECLARATIONS

Declaraiions are used to associate attributes with identifier names which are used in CM I.
programs. If not declared, identifiers are defined by their first occurrence according to the
following rules. ■ >■■■

-
1) identifiers appearing on the left hand side of an assignment statement are defined a>
VARIABLES.

2) Identifiers followed by a subscripted list are assumed to be of type "FUNCTION."

3) All other undefined identifiers are assumed to be names of parse rules or commands

The syntax of the declare statement is given by:

dels = (DCL / DECLARE')
([VARIABLE / "FUNCTION" / 'PARSEFUNCTION /
EXTERNAL] #<'.> ID / EXT-KEYWORD #<',> SR);

If a declare attribute is not given, type VARIABLE is assumed. Identifiers which are
implicitly defined as type FUNCTION or PARSEFUNCTION are EX1ERNAL symbols
and will be linked by the loader to externally defined symbols with that name. -■• '

Semantics of the declare attributes: ^ ■■

VARIABLE:

a cell which holds pointers to CML records

FUNCTION:

arbitrary processing function usually invoked to carry out all or part of the execution of a
command

PARSEFUNCTION:

a function which is used to extend CML. Such a func.^n processes input, and is called in
"parsehelp" and "parseqmark" mode to supply a prompt string and a ? string,
respectively.

EXT-KEYWORD:

precedes a list of command-word strings (# <', > SR) and indicates that the named
command-words are globally defined elsewhere in the system.

EXTERNAL

associates an external symbol with the named rule/variable permitting separately compiled
programs to reference the named rule/variable.

Knowledge Workshop Dcvclopmcnl - Reported as .>f 7/74 page 51

 r- J-T*^ '"

SRI ARC 30 JAN 76 ^ 34PM 22133

II User Interface
9 Command Mela Language

RECOGNIZERS

Keyword Reeognilion

The process of comrrand-word recognition is independent of the description of the
command-words for CML. In the CML description, each command-word is represented by
the full text of the command-word. The algorithm used to match a user's typed input
against any list of alternative command-words is known as command-word recognition, and
is a function of the Command Language Interpreter and is independent of the CML
description of the command.

Keywords are written in the meta language JS upper-case identifiers enclosed in double
quote marks optionally followed by a set of command-word qualifiers.

command-word = .SR ['! #qualifier '!]

The qualifiers serve to control the recognition process for the command-words and to
supercede the system supplied internal identification for the command-words.

qualifier = "NOTT % Not available from a typewriter terminal ^r

/"NOTD" % Not available from a display terminal %

/"LI" % first level command-word (to be recognized by
its first letter) %

/.NUM K explicit value for command-word %

If the user has specified that he wants some (supposedly frequently used) command words
recognized based on th r first letter and the rest only after typing an escape character, the
CML interpreter attempts to accommodate him. The command language designer has
control over which command words „ill be available to such a user via first letter
recognition through the LI qualifi"..

Selection Recognition

Three types of selections are built into CML. They are Destination Selection (DSEL),
Source Selection (SSEL). and Literal-typein Selection (LSEL).

The literal-typein selection is used to collect literal typein from the user, although it might
also allow him to point to text on his display instead of typing it.

A destination selection is us« d to allow the user to select one of several items the tool has
presented to him. This can be done by pointing to it using a pointing device at a display
terminal or by typing characters which the tool will interpret. For example, a tool may
manipulate textual or graphical representations of data stored in a file. The tool might
have a delete command and would use a destination selection to allow the user to specify
the line in the drawing or the word in the text to delete. Thus, when the tool put the
display image on the screen, it did so using primitives in the Frontend that supplied
identifiers for elements of the display [12]. When the user points to an object on the
screen, the identifier for it is returned to the tool.

page 52 Knowledge Workshop Dcvdopmcni - Rcporled as of 7/74

i r-—

!, ..

■ ■ •- -•-■-«: . . .

SRI ARC 30)AN /•_■ b 34PIVI ?2133

II User Interface
9 Command Mcta Lunguugo

A source selection is similar to a destination selection but also allows the user to supply the
argument as a literal-typein.

Basically, these are recognizers which require some entity type as an argument and they
return a data structure which represents the selection. The entity type is obtained either by
some previous invocation of the recognition function for some list of command-word
entities, or use of »he VALUFOF (or #) built in function (*>ee example in Appendix 2).

The DSEL, SSEL. and LSEL functions perform all evaluation and feedback operations
associated with the selection operations. The command language designer may define new
types of selections and define the data structure that is built as a result of the selection.

selection = ("SSEL"/ "DSEL"/ "LSEL") '(param ');

Command Confirmation

The process of command confirmation is represented in CML by a built-in pttramelcrlcss
function.

confirm = "CONFIRM"; % command confirmation rr

simple question answering

The process of simple question answering is represented in CML by a built-m parameterkss
function.

answer ■= ANSWER"; % YES/NO answer to a question
(TRUE if YES) 7c

Other Recognizers

Other recognizers may be added through the use of parse functions as described below.

FUNCTION EXECUTION

Functions may be invoked at any point in the parse by writing a name of some routine and
enclosing a parameter list in parentheses. All functions invoked by the interpreter m"st
obey the ground rules set up for interpreter routines. The actual arguments are passed by
address, rather than va'ue. and two additional actual arguments are appended to the head
of the argument list.

control .ID Or routine name % '($<\> param ');

param factor 9? expression element r/r

/ "VALUEOF" '(SR) % command-word value Cr

/ '# SR rr same as VALUEOF 7c

/ "TRUE" <% boolean TRUE value (one) 7c

/ "FALSE" % boolean FALSE value (zero) r/r

/ "NULL"; 7c null pointer value (zero) 7c

Knowledge Workshop Development -- Reported as of 7/74 pag«-

 m^m^am rJi J T

SRI ARC 30 JAN 76 5 34PM 22133

II User interface
9 Command Mcta Language

PARSING FUNCTIONS

Functions which are declared with the PARSEFUNCTION attribute are assumed to be
parsing functions. They are called in "parsehelp" mode (described below) and when so
called, are passed the addrt:^ of a string as a third argument. The parsefunction routine
then supplies a prompt string which tells what the parsing function does. In addition, the
parse function should, in a like manner, be prepared to generate a more verbose help string
to be used when the user asks to see his current alternatives and a terse syntax string for
when the user asks for the syntax of a command.

FEEDBACK CONTROL

The feedback control elements of CML are used to provide feedback in addition to the
normal feedback generated by the recognizers. This is used to implement additional "noise
words" and help feedback.

1) adding feedback to the command feedback.

A t/ring may be added to the current command feedback by enclosing the quoted string in
angle brackets.

extra feedback - ' < SR ' > ;

2) replacing the last string in the command feedback.

If the user's terminal allows, it is possible to replace the last string in the c mimand
feedback line by using the string replace facility. This is similar to (1) above except the
previous string in the command feedback is deleted before adding the new string.

replace extra feedback = ' <"..." SR ' > ;

A function is also provided to initialize the command feedback mechanisms and cleai the
command feedback area.

clear feedback = "CLEAR";

EXPRESSION DEFINITION

CML is an expression languge. Commands arc defined to be a single expression and
expressions are composed of successive/ahernative expression factors. Alternative paths are
indicated by the character '/ in the expression.

The nesting of expressions may be explicitly defined with parentheses, and brackets are used
to delimit optional expression elements.

exp = # < V > alternative;

alternative = # factor;

factor = terminal/ '[exp '] / '(exp ');

terminal - subname %id/ assign/ function^
/ confirm %command confirmation^
/ feedback % noise word feedbacks

page 5A Knowledge Workshop Development -- Reported as of 7/74

f ^-—'^ -^...—--!---■■

-

SKI ARC 30 JAN 76 5 34PM ?2133

II User liiterfacc
9 Command Mela ..tnguagc

/ recognition %built-in recognizers^
/ loop; %looping facility^

The looping facility permits repetition of a parse rule until an exit condition is met.

loop - PERFORM" ID UNTIL" (exp ');

The ID following the command-word PERFORM is a name of a paising rule which is to
be repeated. This rule is evaluated and then the expression following the UNTIL
command-word is evaluated. If the expression returns TRUE, then the loop is exited and
the next factor in the rule is evaluated. If the expression returns FALSE, then the parse is
backed up to the head of the PERFORM, and the named rule is invoked once again.

COMPLETE FORMAL SYNTAX OF CML

file - "FILE'' ID Sdcls Srule

subsys "FINISH .

subsys -- "SUBSYSTEM" ID % subsystem handle V

"KEYWORD" SR ^r recognition name <7<

#(command / rule) "END.';

command = (COMMAND / "INITIALIZATION / TERMINATION"
/ "REENTRY") rule ,

rule = .ID '= exp ', ;

dels - ("DCL" / "DECLARE")

([VARIABLE / FUNCTION / PARSEFUNCTION
/ EXTERNAL"] # < ', ID / "EXT-KEYWORD # <\ > SR);

exp - # <'/ > alternative;

alternative = # factor;

factor - terminal/ '(exp ')/ '[exp '];

terminal - subuame/ confirni/ answer/ feedback/ recognition/ loop;

subname -- .ID ['- param/ '(5i -', > param ')];

confirm - "CONFIRM";

answer - "ANSWER";

recognition — command-word/ builtmrec;

command-word = SR ['! #qualifier 'I];

qualifier = "NOTTV "NOTDV "L17 .NUM;

buihinrcc = (("SSELV "DSEl V "LSEL") '(param '));

feedback - "CI FAR"/ V [".."] SR "->:

Knowledge Workshop Devclopmenl - Reported as of 7/74 page 55

^^=fe^=r - . ■ ,-, r^friTT ii .lifT«..-)—. irt-frH.^^i

.

SRI ARC 30 JAN 76 r> 34PM 22133

!I User Interface
9 Command Mela language

control - VJ '($<'. >param ');

param =-- factor/ ("VALUHOF" '(SR ') / '# SR)

/"TRUE/ "FALSE/ "NULL ;

loop - "PERFORM" ID UNTIL" (exp ');

IHR OBJEC1 CODE PRODUCED BY THE CML COMPILER -- THE GRAMMAR

Each instruction of rh: object code consistes of the following fields. OPCODE, SUCCESSOR.
ALTERNATIVE, ADDR, CTL. and VAL.

The ALTERNATIVE and SUCCESSOR fields

These contain the addresses of an alternative instruction to execute in parallel with the current
one and the address of the instruction to execute should this one succeed. Null paths are
indicated by 0 valued pointers.

The OPCODE. ADDR. CTL, and VAL fields

OPCODE is an operation code. CTL contains control bits used by the interpieter (reflecting
the NOTD, NOTT. and LI qualifiers). VAL contains an integer toke or zero ADDR is the
address or principal value for the function.

Possible OPCODES

RECOGNIZERS

KEYGP -- command word recognition.

CTL — control bits for level 1 commands. Display commands, and TNLS commands.

ADDR = address of command-word literal string

The current input text is matched against the command-word string specifu hs the current
node and all alternatives of the current n de. This function performs command-word
recognition on all of the alternative nodes Oi ■H current node simultaneously.

This function cannot fail. Control remains in tne command-word recognition function until
appropriate input is recognized or until the control is abnormally wrested via backup or
command delete functions.

The value returned in the argument record is a single word containing the address of the
string corresponding to the command-word actually recognized.

CONFIRM - process command confirmation characters

This function interrogates the input text for one of the command confirmation characters.
Control remains in this routine until a proper confirmation is recognized, and command
termination state is appropriately set. This function always retu us TRUE

The value returned is a single \» i^. containing a command completion code which identifies
the completion mode.

ANSWER - process yes/no question « wer

page 56 KmmiHgc Workshop Development - Reported IN of 7/7a

rrrtr—-.

SHI ARC 30 JAN /6 5 -MPf/ 22133

II User Interface
9 Command Meta language

This .. iciion interrogates the inpul text fi)r one of the yes/no question answer characters.
Coniroi remains in this routine until u proper response is recognized.

SSEL -- get a souree selection

A DDR not used

The sselect routine is invoked to process a souree type selection The return record
generally contains two text pointers which delimit the selected entity.

DSEL -- get a destination selection

ADDR = not used

The dscleet routine is invoked to process a destination type selection. The return record
generally contains two text pointers which delimit the selected entity.

LSEL -- get a literal selection

ADDR = not used

The [select routine is invoked !«• process a literal type selection. The selection type is
passed as an aetual argument. The return reeord generally contains two text pointers
which delimit the selected entity.

V1EWSPECS - process viewspees information

The viewspec input routine is called to process the input stream for viewspec characters.
The return reeord contains the two updated viewspec control words. This function always
returns TRUE

LEVA DJ -- proeess level adjust information

The level adjust input routine is called to proeess the input stream for level adjust
eharaeters. The return record contains a single word whieh indicates the relative level
adjust value (u f I. d -I. ek). This function always returns TRUE.

CONTROL FUNCTIONS

EXECUTE -- transfer of control to another point in the tree.

ADDR address of root of tree foi transfer of control

The current point in the tree is marked and control is transferred to the node pointed «o by
the address field. Control remains in the descendant node until it has been completely
parsed, at which time control returns to the successor of the EXECUTE node

CALL -- subroutine invocation

VAI. number of actual parameters

ADDR address of the subrouf ic

The appropriate number of aetual arguments are popped off of the evaluation staek and
passed to the routine whose address is contained in ADDR

The result from this routine is pushed onto the eval staek if it returns TRUE

Knowledge Workshop Devdopmcnl •■ RcpoMat as of 7/74 page •^

^ —^-^- - - ■ H

SHI-ARC 30 JAN 76 5 34PM 22133

II User Interface
9 Command Meta Language

PFCALL -- parsing function invocation

VAL = number of actual parameters

ADDR = address of the subroutine

The appropriate number of actual arguments are popped off of the evaluation stack and
passed to the routine whose address is contained in ADDR.

The result from this routine is pushed onto the eval stack if it returns TRUE.

This function is also called in "parscheip" mode to find out what it does.

OPTION -- test for an optional construct.

If the next input character is the OPTION select character, then it is read and control is
transferred to the node at address ADDR. If the next character is not the OPTION
character, then control passes to the successor path of the current node.

FEEDBACK ELEMENTS

FBCLEAR -- clear the contents of the feedback buffers.

The feedback state information and command feedback line are set to their initial or empty
position.

ECHO ~ appends a noise-word string to the command feedback link

ADDR - address of the text siring to be appended.

RECHO -- replaces the last noise-word string in the command feedback line

ADDR = address of the text string which is to replace the last item in the command
feedback buffer

VALUE MANIPULATIONS

LOAD - loads a pointer to an argument record into the top of the eval stack.

ADDR = address of the variable containing the pointer to the argument record.

The pointer value contained in the variable whose address is contained in ADDR is pushed
onto the top of the eval stack.

STORE - saves a pointer to an argument record in a variable

ADDR - address of the variable

The address of an argument record is fetched from the top of the eval stack and is saved in
the variable at address ADDR.

ENTER - enters a constant value into the argument record pointed to by the top of the
eval stack.

ADDR - value to be entered (18 BITS only)

page 58 Knowledge Workshop Dcvelopmenf - Rcporfsd as of 7/74

mam
i . '--

- ^SiS;3

SKI ARC 30 JAN /b 5 34PM ?l., 13J

II User Interface
Q Command Mcta Language

The value is taken from the ADDR field of the instruction and is entered into the
argument record for the ENTER node in the path slack (whose address is at the top of the
eval stack).

PROBLEMS WE HAVE ENCOUNTERED WITH CML

The principal problem we have encountered is that some of the recognizers (command-word
recognition, command confirmation. LSEL. SSEL, DSEL. and so forth) cannot fail. This is
purely an implementation decision that was made regarding the CML Interpreter and,
consequently, doe» not impact the language itself. In addition, the CML Interpreter v^t
implemented as a stack machine and would better serve our needs as a machine with an
accumulator and an argument stack.

Also, the manner in which the user-input prompt, the current alternatives, and the syntax of
commands is generated should be more standardized to avoid some of the problems and
anomalies we have encountered to date. These problems have chiefly been caused by the
knowledge the interpreter has of some funcions and lack of knowledge about others.

In order to serve the needs of a wider range of tools (application programs) we feel that the
declaration facility of CML should be expanded to allow the command language designer to
define how to handle many special things such as collection of parameters of a form specific 10
the tool. In addition, vve would like to make the CML Interpreter system available through an
interface [6] that does not require the tool to be written in the same language as the Interpreter.

USING THE CML SYSTEM

WRITING CML PROGRAMS

Source programs for the CML compiler are free form NLS or TENEX sequential files.
Comments may be used wherever a blank is permitted and the structural nesting of the source
file is ignored by the compiler.

COMPILING CML PROGRAMS

CML source programs are compiled into REL files with the Compile File command in the
PROGRAMS subsystem. CML is the compiler name for the CML compiler.

RUNNING CML PROGRAMS

A complete interactive subsystem usually consists of three distinct parts: (1) The syntactic
description for the subsystem command language. (2) The parser interface routines ("X" level
parsing support routines). (3) Core execution functions.

If a CML subsystem is to be run as a user program, then the rel-files for the syntax, parsing
support, and execution functions are loaded into the user programs buffer with the Load
Program command.

After loading the rel-files the user's subsystem is connected to the set of available subsystems
with the Attach Subsystem command. The name specified in this command is the name of
handle for the subsystem (the ID appearing on the SUBSYSTEM statement of the CML
program).

Knowledge Workshop Oc.clopncni -- Reported as of 7/'/4 page

~llMfl ■'" .- - - -

-

SKI-ARC 30 JAN 76 b 34PM 22133

II User Interface
9 Command Mela Language

The user's subsystem may then be invoked by using »he GOTO command, as the system will
now know about the new subsystem.

FUNCTION INTERFACE PROTOCOL

The syntax of the function call in the CML meta-language ;s similar to that of most
programming languages: the name of the function is followed by a list of expressions enclosed
in parentheses. In the CML system however, there ;'re some strict rules which apply to all
execution functions invoked by the interpreter. These rules are enumerated below:

1) Additional actual arguments

Preceding any actual arguments which appear in a function reference in CML, the
interpreter supplies two additional actual arguments. These are.

1) a pointer to the "function state record"

2) an integer which defines a parsing mode

= parsing: normal execution mode

- backup: backup after a FALSE path is taken

= cleanup: resetting of state after completion of command

- parsehelp; pouching prompts string (parse functions only)

These additional arguments must be used by all execution functions to determine what they
arc to do. The pointer to the "function state record" is used to return values from the
function and to save state information associated with a particular invocation of the
function. The length of the function state record is 10 words and this record may be
formatted in any manner appropriate to the function.

If 10 words is not suflicient space to record all of the state associated with a particular
invocation of a function, then the function must use a storage allocator to allocate the
additional storage and record the handles to the allocated storage in the function state
record. Note that if this additional "local state" storage is required, then it is the
responsibility of the execution function to de-allocaate the local Ntate storage when called in
backup or cleanup modes.

2) Returning parse failure

All execution functions are passed a pointer to their function state record. If the function
processes normally, then it returns the same pointer as its only return value. If the
function decides that the parse should fail at a given point, then it returns FALSE

3) Passing arguments by address

All of the actual arguments in a function call on an execution function are passed by
address rather than by value. The values actually passed are pointers to the function state
records corresponding to the actual arguments. The format of the function state records
are defined by the execution functions which manipulated them, and thus the location of
parameter values in these records is determined by convention, the caller and callee having
previously agreed to a particular layout for the function state record.

nagc 60 Knowledge Workshop Developmcnl •■ Reported as of 7/74

■ ■

SRI ARC 30 JAN 76 5 34PM 22133

II User Interface
l) Command Meta Language

4) Order of control

An execution function will always be called in parsing mode before it is called in backup or
cleanup modes.

A function routine which saves state information in the function state record must initialize
its slate record to some consistent state before it calls any subroutines which mav cause
SIGNALS or otherwise cause control to abnormally pass above the execution funtion.

FLOW OF CONTROL IN THE INTERPRETER

At any point in the process of parsing, the control pointer for the interpreter points to a structure
word in the grammar. A path stack also exists which shows the nodes from which TRUE
returns have been achieved. Some operations mark the path stack for halting the backup process.
The parser has four distinct control states defined as follows:

1) parsing: recognition state where input text is compared with grammatical constructs to
determine the parsing path in the parse tree.

2) backup: A FALSE return has been obtained from some execution/recognition function.
The path slack is backed up until a non-NULL alternative path is found, at which time the
parse mode is set to parsing, and recognition of the alternative path is attempted. If no
non-NULL. alternative path is found, then the parse fails and the interpreter returns FALSE.

3) cleanup: A terminal parse has been achieved and control is passed to each execution
routine to reset any state informations set by the routine.

4) parseheip (used only with parsefunctions) Before calling a parsefunction in "pars'n^
mode, the function is called in "parseheip" mode to solicit a user prompt string.

The general flow of control is:

1) An initial path stack entry is constructed, and the parse mode is set to parsing. The
execution function for the current node is evaluated. A pointer to the "function state record"
is passed to the routine. The state record contains the return values for the function as well as
a record of any state information saved by the function (foi backup purposes).

2) A prompt string is generated for the user indicating in a terse fashion what his current
alternatives are. If he wishes expansion on this he may ask for his current alternatives or for
the syntax of the rest of the command.

3) If the function returns TRUE, then the successor to the current node becomes the current
node. If this is NULL, then the PTRSTK stack is backed up until a non-NULL successor
path is found. If none is located before the bottom of the current parse state is reached, then
the root of a parse tree has been reached, and a command has been successfully executed. In
this case the command reset operation is performed and the interpreter is set to "parsing
mode once more.

4) If the function returns FALSE then the parser mode is set to "backup" and a non-.
alternative path is sought.

VL

Knowledge Workshop Developmenl •■ Reported as of 7/74 page 6!

SRI ARC 30 JAN 76 b 34PM 22133

II User Interface
9 Command Mota Language

After a eommand has been exeeuted, the parsing path for the tree is re-evaluated in "reverse
order" beginning with the terminal node of the path. Eieh execution function is re-invoked, in
"cleanup" mode, and is passed the handle for the state information record which it generated on
the forward pass through the grammar. Each execution routii.e has the responsibility of resetting
any state information which it wishes to do at the termination of a command. Cleanup continues
unti' a "starting point" is reached in the parse. This is generally the beginning of the command.
At this point, the interpreter "shifts gears" and goes into forward or recognition mode and begins
back down the grammar for the language.

The same backup mechanism is also used during command specification in order to back up the
parse to allow the respecification of all or part of the command. The command delete function
backs out of the parse tree until the beginning of the command is reached.

The same backup mechanism may be adapted to control the partial backup required for executing
commands in "repeat mode" where at least one of the alternatives is defaulted to its current value.

SAMPLE CML PROGRAM

EILE nlsexample

SUBSYSTEM nlseditor KEYWORD "BASE

% COMMON RULES %

% PARAMETER TYPE DEFINITIONS 7c

editentity = textent / structure;

% TEXT PARAMETER TYPE DEFINITIONS %

textent =

CHARACTER / "WORD / "VISIBLE / "INVISIBLE / "TEXT / LINK /
"NUMBER ;

7* STRUCTURE PARAMETER TYPE DEFINITIONS <7r

structure STATEMENT / "GROUP / "BRANCH / PLEX";

COMMAND ^replaced

z replace

REPLACE"

type - editentity

% The rule EDITENTII Y defined above is evaluated. The one chosen (via user input) is
stored in the variable TYPE. ^

<"at"> destination - DSEL{type)

Cr The user is presented the noise word "at" and requested to supply a destination of the

page 62

Knowledge Workshop Devdopmmi - Reported as of 7/74

^mtw***,*****''.

SWI AW'' 30 JAN 7b 5 34PM 22133

I! User Interface
9 Command Mcta Language

type chosen from EDITENTITY. The user must then identify the item to be replaced.
The representation of this item is stored in the variable DESTINATION. %

< "by"> source - LSEL(type)

% The replacement is collected from the user and stored in the variable SOURCE. ^

CONFIRM

% Have the user confirm that he wants the replacement to take place as specified. '"

xreplace(type, destination, source);

% call the primitive in the application program thut performs replacements. Pass it the
type of thing to replace, the specific instance of that type to be replaced, and the
replacement. %

COMMAND <7r loader

zload =

LOAD"

type - (FILE/ PROGRAM)
cr this command allows user's structured text files and programs to be loaded into NLS for
user manipulation and execution, respectively. 9f

filename . LSEL(#"OLDFILENAME") CONFIRM

% Collect the name of an old file from the user. The file may be the one to load or it may
contain the program to be link-loaded. ^

xload(type. filename):

7c pass the application program's load primitive the type of load a id the file name. %

COMMAND Cv-interrogate user to help him send mail to other users^r

interrogatecmd -

INTERROGATE

CONFIRM

% User wants to be interrogated for needed info to send mail to other users, ^r

CLEAR --"distribute for action to:" >

contc ^ LSEL(# IDENTLIST)

setrHd(#"ACTION", content)

% CLEAR caases Carriage Return Line Feed on a typewriter-like terminal and causes the
command area to be cleared on a display. The application function setfield is called to set
the "action" field in the current message header to the list of user-recipients supplied by
the user and stored in CONTENT <%

CLEAR < "distribute for information-only to:" >

Knowledge Workshop Dcvelopmcni - Reported as of 7/74 page 6A

SRI-ARC 30 JAN 76 5 34PM 22133

II User Interface
9 Command Mela Lan/iuagc

content .- LSEU^'IDENTLIST")

setfIeld(#■,INFORMATION,,. content)

CLEAR <"title:,> content ^ LSEL(#"TEXT")

setfield(# TITLE", content)

CLEAR < "type of source:" >

(

"MESSAGE" type _ # STATEMENT"

content ^ LSEL(#"TEXT")

% Message is the same a? statement.%

/ type - "FILE"

content - DSEL^'CHARACTER")

9r The user may specify any character in the file. %

/ type - structure

<"at"> content - SSEL(param)

% Since this is an SSEL. the user may type it or specify its location in one of his files. %

/type - "OFFLINE" < "document" >

< "located at" > content ^ LSEL(#"TEXT")
r/(If it is an offline hardcopy document, simply have the user describe where it is being
stored. %

)

setfield(type. content)

CLEAR <"show status?" > (ANSWER showstalus() / DUMMY)

% If the user answers "YES", call SHOWSTATUS to present the current spe:ificatiun of
the mail to the user. %

CLEAR <"send the mail now?"> (ANSWER xdoit() / DUMMY) ;

7(If the user answers "YES", call XDOIT to send the mail as specified, otherwise simply
let him use other commands to change the specifications and send it. %

END

FINISH

page 64 Knowledge Workshop Devclopmcni - Reported as of 7/74

SRI ARC 30 JAN 70 b 34PM 221 33

II User Interface
9 Command Mcta Language

SAMPLE INTERPRETER PARSEFUNCTION ROUTINE

Assume that in some command we want the typein of a number to appear as an alternative of
•ome set of command-words. We can accomplish this by defining a parsefunction (call it
looknum) which looks at the next input character and succeeds if the next character is a digit and
fails otherwise. If we write this function as the first alternative in some command, then control
wil! pass from the interpreter to the parsefunction before it passes to the command-word
interpreter.

Suppose our command looks like:

COMMAND sample =

INSERT"

% determine the type of insert %

(looknumO < "number" > type - #"NUMBER"

/ type ^ ("TEXT" / "LINK"))

% the variable TYPE now contains NUMBER, TEXT, or LINK. We now use the LSEL
function to get a selection of this type and store it in the variable SOURCE %

source ~ LSEL(type)

% p". a command confirmation to make sure user wants this done %

CONFIRM

% now invoke the insert execution function passing as arguments the entity type and the
selection of that type %

xinsert(type, source);

Now take a look at the parsefunction looknum which is called by the interpreter both when
prompting the user and also during the actual parse of the command.

% LOOK FOR A NUMBER 9r

(looknum) PROC(

% looknum looks at the next input character, if it is a digit, then a true return is taken else
FALSE is returned c/c

% FORMAL ARGUMENTS rr

resultptr. ^ ptr to the function state record %

parsemode, % parsing mode for the interpreter %

string); % ptr to prompting string %

REF resultptr, string;

%. •r

CASE parsemode OF

Knowledge Workshop Development •• Reported as of 7/74 page 65

;_.■»-- i -^

SRI ARC 30 JAN 7b 5 34PM 221 33

II User Interface
9 Command Meta Language

= parsing:

CASE lookcO OF

IN [0, 9]:

NULL;

ENDCASE RETURN (FALSE);

= parsehelp.

•string* ^ "NUM:";

ENDCASE;

RETURN (&resultplr);

END

REFERENCES

[1] (9ala) Douglas C. Engelbart. Design Considerations for Knowledge Workshop Terminals.
In AFIPS Proceedings, Vol. 42, 1973 National Computer Conference, pp. 221-227,
1973. (14851,)

[2] (9ala) (9ale) Douglas C. Engelbart. Richari W. Watson, James C. Norton. The
Augmented Knowledge Workshop. In AFIPS Proceedings. Vol. 42. National Computer
Conference, pp. 9-21, 1973. (14724,)

[3] (9ala) SRI-ARC. Online Team Environment / Network Information Center and Computer
Augmented Team Interaction. Augmentation Research Center, Stanford Research
Institute, M-nlo Park, California 94025. 6-MAR-73. (13041,)

[4] (9ala) Susan R. Lee. A Review of the SUPARS Report. Augmentation Research Center.
Stanford Research Institute. Menlo Park, California 94025. 12-NOV-73. (20182,)

[5] (9ala) Douglas C. Engelbart Human Intellect Augmentation Techniques. Augmentation
Research Center. Stanford Research Institute. Menlo Park. California 94025. JUL-68.
(3562.)

[6] (9alb56) (9alk) (9c3) James E. White. Version 2 of the Procedure Call Protocol (PCP).
Augmentation Research Center, Stanford Research Institute, Menlo Park, California
94025. PCP-COVER.NLS;5,. (24590,)

[7] (9aIp) Charles H. Irby. Tree Meta References. Augmentation Research Center, Stanford
Research Institute. Menlo Park. California 94025. 7-MAY-73. (16310.)

[8] (9alp) Marilyn F. Auerbach. Notice of Online Tree Meta Reports. Augmentation
Research Center, Stanford Research Institute, Menlo Park. California 94025.
23-JAN-73. (14052,)

[9] (9aIp) (9a2a) SRI-ARC. Tree Meta Report -- Preliminary Draft. Augmentation Research
Center, Stanford Research Institute, Menlo Park, California 94025. 23-JAN-73
(14045,)

page 66 Knowledge Workshop Development - Reported as of 7/74

*mmm

SRI- AKr 30 JAN 70 5 34PM 22133

II User Interface
9 Command Mcta Language

[10] (9alp) (9a2a) SRI-ARC. Tree Meta Report - Preliminary Report, Formal Description.
Augmentation Research Center, Stanford Reseirch Institute, Menlo Park, California
94025. 23-JAN-73. (14046,)

[11] (9a2a) Charles H. Irby. Display Techniques for Interactive Text Manipulation. In
Proceedings of the National Computer Conference, 1974, p. 247-255. (20183,)

[12] (9a4c2a2) Douglas C. Engelbart. Coordinated Information Services tor a Discipline- Or
Mission-Oriented Community. Augmentation Research Center, Stanford Research
Institute, Menlo Park, California 94025. i2-DEC-72. Paper given at Second Annual
Computer Communications Conference, San Jose, California, 24 January. 1973. I3p.
(12445.)

[13] Douglas C Engelbarl, William K. English, A Research Center for Augmenting Human
Intellect. In AFIPS Proceedings. 1968 Fall Joint Computer Conference. Vol. 33. Part I.
p. 395-410, 1968. (3954,)

Knowledge Workshop De\e. >pmcnl - Reported as of 7/74 page 67

-^

SRI ARC 30 JAN 76 5 34PM 22133

Fir>t Studies of NLS Command Use and Timing
(by Susan R Lee)

INTRODUCTION

Two special studies have been made to determine the efficiency of the system and how it is being
used. Studies of system efficiency have been made on several levels, including the timesharing
system as a whole, NLS as a text editor, and execution times for individual commands.

Various methodologies have been utilized to achieve these goals. Programs have been written to
collect and reduce data in a systematic way. and other available means for collecting data have
been used. A description of methods used for some typical studies follows.

SUPERWATCH AND SYSTEM oSAGE

Superwalch is a program designed to record statistics on such things UM the usage of the drum
and disk, paging overhead, load on the system, number of users, percent of system used by
individual users, and much more. See (20b) for a more detailed description of this program.

Superwatch has been used both for measuring overall system performance and for laily
operational control, both at ARC and the Utility.

After correlating load average with number of users, one conclusion reached was *ha{ with the
existing computer configuration, the system could reasonably serve a maximum of tventy users at
any one time. This conclusion helped set the maximum number of users in the gro«F allocation
scheme (16). After further analysis of use by users, number of users, and individual use patterns,
it was determined that the average DNLS user used 4% of the system, while the average TNLS
user used 2% of the system. These facts led to the conclusion that the system could support 10
DNLS users and 10 TNLS users, or 15 DNLS users, or 30 TNLS users, or some other
combination allocating 609r of the machine to users (approximately 40% is needed for overhead
functions and idle time as shown in the tables below).

In order to arrive at conclusions such as the ones described above, there is a requirement for data
collection of the type done by Superwatch. The following tables give samples of the output from
Superwatch showing the distribution of CPU time for May, 1^74.

Overhead 32.3r/f
Percent used 56.8'7r
Idle 10.7%

Total lOO.O^r

Overhead and percent used (%U) or percent of CPU used by users may be further broken
down as follows. r -

Preceding page blank
Knowledge Workshop Devclopmcnl -- Reported as ;>f 7/74 page 6^

If "f T"nfTTtflMi i mirifTi^lli

SKI ARC 30 JAN 76 5 34PM 22133

11 User Interface
10 Command Use

Total Percent Used

I/O wait 16.0%
Scheduling 6.6%
Process clocks 4.8%
Garbage collection 2.7%
Network overhead 2.4%

Total Overhead 32.5%

NLS 46.9%
Hardcopy output 11.9%
Journal 2.5%
Ne*work 8.9%
Support 20.8%
Systems development 6.7%
Fortran development 2.3%

100.0%

Graphs showing such things as amount of time system is idle, load average, number of users, and
percent of system used by users have facilitated the rescheduling of jobs such as catalog
production, and have allowed users to pick times to work 'vhen the system is not loaded so as to
maxim.ze the use of their time An example follows of a graph showing average variation of
number of us'.rs over a 24-hour day.

TIME PLOT OF AVERAGE NUMBER OF USERS FOR MAY 1974
x axis labeled in units of hr:min, x unit = 30 minutes

1 3

0
9
8
7
6
5
4
3
2
I
0

*
*

♦ ♦ ♦

* * *
* * *
* * *
* * *
* « *

* * *
* * *
* * *
* * *
* ♦ ♦

* * * ********

+

* * *
* * *
* * *
» ♦ •

* * *

* * *

0 : 00 5 : 00 10 : 00 I 5 . 00 20 : 00

page 70 Knowledge Workshop Development - Reported as of 7/74

SRI ARC Mi JAN 76 b i^'M .'.'! i i

li L^scr Interlace
10 Commund Use

Projections of the efTecl of changes in the system arc possible .tough 'He use of Superwaich
FOJ example, during the later part of 1973. the system was heavily loaded and local users were
encouraging a change in system configuration or allocated slots to improve service. A check of
network usage indicated that 25rr of ihr CPU allocated to users went to network users who
would soon depart for the Utility. This fu t satisfied local users.

COMMAND FREQUENCY COLLECTT ,J AND NLS USAGE

Summary of Results

In order to improve the efficiency of NLS commands that were used mnst often, a program
was used to collect data on command frequency. Statistics were collected from all users of
DNLS for one work-week A compilation of the results showed that a tot il of I0.SI4
commindv were issued during the five day period, accounting for 134 different commands.

It should be noted that the collection was done on a macro level, i.e. only the top level
commands were recorded Commands within subsystems or executed via the repeal
command feature were not recorded. The data, however, give an overview of usage.

Jump commands accounted for 4(Kr of all commands an . text editing commands accounted
for 34^. Twenty commands accounted for 75rr of all use J.

Early studies of command timing led us to the conclusion that to be cost efTective, comma' fs
would have to be made more efficient. Fo'* example. 10 msec were required to insert .c
character in TNLS and 30 msec were requ.i'ed to insert one character in DNLS. The list of
most used ommands was i^ed as the basis for choosing commands to concentrate on, and
after attempts to improve the Insert Character command and other high frequency commands,
3 msec were required to insert one character in TNLS and . msec were required to insert one
character in DNLS

Examples of Data

The most frequently used commands were ordered to produce a list of 20 commands that
account for approximately 759J of all commands used. The tables on the following page show
the complete list, and a list of commands by {• net onal category.

Knowledge Workshop Development •• Reported .is of 7/74 p.ige 1

H User Interface
10 Command Use

SRI ARC 30 JAN 76 b 34PM 22133

Command Freqi't'iicy Percentage Cumulali*e
Jump Item
Insert Character
Jump Link
Insert Si^rriviil
Jump Jump*
Jump Successor
Replace Word
Delete Character
Replace Text
Replace Character
Update New
Jump Origin
Jump Content
Jump File
Goto Display
Delete Text
Delete Statement
update Old
Load File
Jump Return

*The frequency of 2 user typing HjJM indicates the number of times a user was in the Jump
mode and retyped "Jump" unnecessarily. "JJs" recount for IO'Y of the Jump commands.

140'
562
495
492
425
352
350
316
296
282
277
254
240
225
220
199
196
195
189
189

13
6
5
5
4
4
4
3
3
3
3
3
3
:
2
2
2
2
2
1

13
19
24
29
24
M
4!
44
47
50
53
56
59
61
63
65
67
69
71
73

Commands were divided into

Category

Jumping
Texi Editing
Fil- Manipulation
Text Creation
Structure Fditing
Viewing
Other

Total

13 functional categuncs to further d.fTerentiate usage patterns.

Percentage Number

10814

4205 39
3642 34
853 8
836 8
333 3
279 2
666 6

ICO^

page 72

Knowledge Worksho.. Developmew Reported as of 7/74

- ■

SRI AK(30 IAN 76 f) 34PM 221 i<

II User Interface
10 Command Vsc

JOURNAL USAGE STATISTICS

The Journal is an integral part of the NLS system, and it was therefore felt that the Analysis
group should gather data on the Journal to better understand its usage

Throughout 1972 and 1W. Journal usage increased steadily until mid-1973 when the number of
items sent eaeh month reaehed about 450 per month. One-third of these items originated at a site
on the ARPANET other than ARC A table and graph detailing this growth are shown on the
following page.

Knowledge W'orkshop DevclopmcnJ - I is of 7/74 p.«gc 73

^ _ ^ ■■TM^^ria

SKI ARC 30 JAN 76 5 34PM 22133

11 User Interface
10 Command Use

Monthly tabulation of Journal items sent in 1^72 and 1973.

1972 1^73

January 127 404
February 156 432
March 131 505
April 118 474
May 174 437
June 129 608
July 105 461
August 185 405
September 164 355
October 251 448
November 297 473
December 315 385

Total 2152 5387

Graph of Journal usage for 1972 and 1973.

600
550
500
450
400
3 50
300
2 50
2 00
150 • * * * •
1 00 • * • ♦ • »

50 * * ¥ * * *

0 • • • * • ♦

+ + + -(- + + +

J FMAMJ JASONDJ FMAMJ JASOND

page 74
Knowledge Workshop Development -- Reported as of V74

in i . ■ ■ I r - —TTT-THÜi — - - —

SMI ÄR(JO JAN 76 5 34PM 22133

11 User Interface
10 Command Use

The majority of items are distributed to a relatively small number of people. Studies show that
409r of all items were sent to one person, and 709r were sent to five or fewer. Distribution
patterns are detailed below.

Cumulative
Percent

Type of Distribution Percent

Individual idents

0 individuals*
1 individual
2 individuals
3 individuals
4 individuals
5 individuals
6-10 individuals
More than 10 individuals

Group idents

SRI-ARC
One group
One group plus 1-5
individuals

TOTAL
*(test or for the record)

The aoilny to look at the number of times a Journal item has been ajcessed indicates that files
distributed to a group of 15 or more people are accessrd in the following manner (accessed
implies the text of the item was either read or glanced at):

Day 1 - 9 accesses
Day 2 - 7
Day 3 - 3
Day 4 - 1
Day 5 - I
Day t - I
Day 7 to Dav 20 - 0

Generally. 400, of all access occurs the first day, and 90^ has occurred by the end of the
fourth dav.

5% 5%
409c 457c
\07r 557c
b9c b\7c
57c bb7<
4<7c 107c
V7/c lb7c
m 197c

\2% \27c
6% IS^r

3% 21^

lOO^r

Knowledge Workshop Developmcnl - Reported as of 7/74 page ^5

- - ■ MJM^^^MInMMMi

SRI ARC 30 JAN ?6 b 34PM 22133

Chapter III: NLS SUBSYSTEMS

The Calculator
(by Elizabeth K Michael)

BACKGROUND

O1^ Calculator

A calculator system was implemented in the XDS 940 version of NLS which had two primary
operating modes: regular desk calculator mode (add. subtract, multiply, and divide) and
function mode (with named variables, etc).

Although some effort was devoted toward rewriting the Calculator in L10 for conversion to
the DP 10, this version was never implemented on the PDP-10. The strategy of the current
calculator design was to take as many useful features as possible from prior work while adding
those new features tha'. provide additional usefulness and power.

New Environment

Extensions to NLS added since the XDS-940 version made it possible to give the new
calculator features that were not available in the older version. The most important of these
was the split screen capability. This feature allowed the user to display one or more files to be
used as targets for results of calculations or to obtain input for calculations. In addition the
user could display simultaneously a file in which every calculation was recorded.

Increased power of both TNLS and DNLS addressing made the extraction and insertion of
numerical data from and into files much more flexible.

DESIGN SPECIFICATIONS FOR L10 ENVIRONMENT

Introduction

The Calculator is planned to evolve in three successive major phases. The Phase 1 Calculator
was designed to provide the capabilities of a relatively simple desk calculator in combination
with the file editing features of NLS.

Design of Phase 2 (a compiler capability) and Phase 3 (graphics capability) was not completed.
These are described briefly under Planned Extensions.

What it Does

The Calculator is a self-contained subsystem of NLS. It adds, subtracts, multiplies, and
divides like ? desk calculator. Operands may be selected from NLS files using standard NLS
addressing or selection modes, or t^ey may be entered from the keyboard either directly as
numbers or indirectl) as simple arithmetic expressions (e.g., 2x4.6/5.123). Results may be
easily stored in any NLS file The user may leave the Calculator, use othf*r NLS commands.

page 7t Knowledge Workshop Development - Reporicd as of 7/74

SRI ARC iü JAN 76 5 34PM 22133

III NLS Subsystems
11 The Calculator

and then return to the Calculator and continue work there, just as though his original session
had not been interrupted. It is this close integration of numeric work with NLS textual
capabilities that is the unique and powerful innovation of the NLS Calculator.

Each operation is recorded in a special Calculator file, created for the user by the system. The
results may be stored both in the special Calculator file and in other user files. The user may
request various number formats (e.g., have numbers edited with commas, preceded by a dollar
sign), keep as many as ten running totals in separate accumulators, and enter arithmetic
expressions as if they were numbers.

When the user leaves the Calculator, his accumulator values and number format specifications
are saved for him in the Calculator file. When he next enters the Calculator he is given the
option of beginning exactly where he left off before or starting with all accumulators set to
zero.

Arithmetic operations are performed on the value in the current accumulator. An arithmetic
operation requires as input an optional operator followed by a signed or unsigned number or
an accumulator designation. The number may be entered directly from the keyboard,
indirectly as an arithmetic expression, selected by typing an address expression, or, in DNLS.
selected by the cursor (Bug) from any of the displayed files.

There arc commands in the system that allow the user to change the current (active)
accumulator, display the values in all accumulators, clear the accumulators, change the format
of stored numbers, store values in files, and copy tne special Calculator file.

Planned Extensions

Planned enhancements to the Phase 1 Calculator included adding a broad range of
mathematical functions: exponentiation, root extraction, and trigonometric functions. Most of
the basic mathematical routines to accomplish this have been written and tested. Only the
user interface routines remain to be done.

The Phase 2 Calculator was to provide a compiler with a user-available algebraic language that
would allow the user to evaluate functions and write complex interactive mathematical
programs.

The plan was to interface NLS, through the Calculator subsystem, to a compiler (initially
Basic) already available on the PDP-10. The task consisted of the following areas.

1) Transferring control between NLS and the compil.r subsystem.

2) Passing control information to ihe compiler subsystem. This is concerned with passing
commands to the subsystem as to what action is to he taken, where to ge! input, where to
place output, etc.

3) Transferring data between NLS and the compiler subsystem. This involves taking data
in internal NLS format and converting it to a meaningful format for the comniler and
accepting compiler output and converting it to NLS format.

4) Providing a smooth and simple user interface to accomplish all of the above.

Knowledge Workshop Oevclopmenf -- Reported as of 7/74 page 77

-

SRI ARC 30 JAN 7b b 34PM 22133

III NLS Subsystems
11 The Calculator

These problems exist in relation to any other subsystem and NLS, and it was decided that the
best solution would be to wait for BBN's implementation of stream files in TENEX. The
proposed feature would provide a communication system responsible for moving data between
user processes, the file system, various devices, etc.

The Phase 3 Calculator was to provide a graphics capability and was to be coordinated with
future plans for more general graphics features for non-calculator, NLS use.

IMPLEMENTATION

The Phase I Calculator was implemented initially under L10. This version was in use tor about a
year during which time user-reaction was observed. When the Calculator was converted to
NLS-8 with CML, a number of the Calculator features and defaults were changed on the basis of
these observations.

The system was used extensively in the preparation of internal ARC measurement, budget and
accounting reports, and for similar reports prepared at RADC

page 78 Knovticdgc Workshop Development •- Reported as of 7/74

_ - --

-

SRI ARC '0 JAN 76 5 34PM 2213

T.ic Output Processor and Computer Output to Microfilm
(by Dirk H van Nouhuys, Elizabeth K Michael, N Dea.i Meyer)

HOW THE OUT PUT PROCESSOR WORKS FROM THE USERS V EWPOINT

The NLS Output Processor allows the user to control printed format by ins rting brief directives
in the text. Such directives normally have the form of a capital letter, some lower case letters, an
equals sign, and a number (if required). Figure I. on the following page, illustrates some of the
basic directives and the formatting they control.

Knowledge Workshop Dcvelopmcnl -• Reported as (if 7/74 page 74

-, mm* i- ■■---

SKI ARC 30 JAN 76 5 34PM 22133

III MLS Subsystems
12 Oulpuf Processor

Figure I. Basic Formatting Directives

LM BASH

HJLM

T"
TM

JOURNAL HEADER

HJRM-

HLM r

YBHJTM

z

■HRM-

■8LM ■*

jRM-

YMdx

BM

YPF

NOTE LM wt» MLM, BLM. and FLM
RM Mtf HRM. 8RM. anr* FRM

SA 3074 1R

page «0 Km. tedg-- Workshop Development -- Repo« «1 as of 7/74

rmrrtiii-i i
ii -" - ■■ Tic.Tir -

■

SRI ARC 30 JAN 7b 5 34PM 22133

III NLS Subsystems
12 Output Processor

Figure 1 illustrates the operation of a few basie instructions. All values in the figure are defaults
which the user may change.

1) Rm places the ri^ht margin, 72 characters to the right.

2) H creates B header. The user may specify one or more running headers by the instruction
H^'text". This report ha« three headers most places. It is possible to set their margins
separately as in this report.

}) Tm sets the number of blank lines to be left at the top of each page, in this example three.

4) Brm sets the right margin of the body of text 65 characters :c the right.

5) Blm sets the left margin of text 12 spaces to the right.

6) Ilev sets the indentation per level of hierarchy.

7) Lbl puts blank lines between lines.

8) Lbs puts blank lines between NLS statments.

^ Sn writes statement numbers at the beginning of statements.

10) Snf writes statement numbers any place in the first line of a statement, by default near the
right margin.

11) Ymax measures out length of the whole page.

12) BM sets the bottom margin of the body text.

13) Center centers a given number of lines.

14) F sets a fooler. By default the footer is a page number that users may generate separately
with the directive Pn.

Other directives control, for example, tabs, position of statements according to level in hierarchy,
numbering according to level of hierarchy, unusual types of indentation, and, in the case of COM
(Computer Output to Microfilm) printing, type face, lype size, columnation, and spacing for
illustration. Directives may redefine or suspend other directives.

HOW THE OUTPUT PROCESSOR WORKS INTERNALLY

From the viewpoint of NLS system structure, the Output Processor runs as a process under NLS
which, whenever the user gives NLS a command that requires its services, is loaded into a
transient area.

When a user gives NLS an Output Processor command, NLS loads the program and calls the
Output Processor's initialization routine. A table of addresses and values, which enables the
Output Processor to use NLS routines and to know about things like current viewspec settings
and statement levels, is passed to the initialization routine.

The Output Processor consists of the following primary elements:

A set of tables that contain information about directives, such as minimum and maximum

Know iedgc Workshop Development ■ Reported as of 7/74 page HI

I--

SRI ARC 30 JAN 76 b 34PM 22133

III NLS Subsystems
12 Outpul Processor

values, default values, and the names of the appropriate interpreter rules to parse the
directives.

These tables are 'compiled by a trivial ompiler called DINIT that makes them available to
the directive recognizer and executor.

The directive recognizer and executor parses all directives and stores appropriate values in
tables and flags that are referred to by the remaining processors.

The directiv recognizer and executor is written in a language called Tree Meta [1](2]
and is compi.ed by the Meta compiler.

The values in the separately compiled tables identify directives, test their validity and
determine which interpreter rules apply to the directive.

The remaining code, written in L10, comprises the initialization and termination routines, and
routines that format each statement paying attention to the directive values established by the
directive recognizer.

The Device dependent code has been carefully restricted to the initializai on and post
processing routines so that it is relatively straightforward to expand the Output Processor
to accommodate new output devices.

The NLS file statements are processed one at a time. Each is scanned for directive nd
formatted accordingly. Processed statements are stored in a one-dimensional array and written
a page at a time on a Printer or COM file.

Files to be sent to the line printer are fully formatted for printing. The text of the directive
itseif is removed from the print image of the statement unless the user specifics otherwise.

The output file format is quite different for a document to be produced using COM.

The Output Processor interprets the user's specifications of font, character size, leading,
columns, etc.; the COM file it produces includes all the information a virtual COM device
needs to place characters on the page.

We have fied tc make a simple way for users to produce documents with the format range
of most textbooks without concerning themselves with the numerical locations of points on
a COM device dot matrix.

This simplified subset has the following characteristics: >

The user normally views the COM device as a machine for composing 8 1/2 X 11 inch
pages of text.

The user specifies physical dimensions, such as character size and margin settings, m units
of one-thousandth inch The page has a coordinate system in which (0.0) is the upper left
corner of the page and (8500. 11000) is the lower righi corner. Character size may be
optionally specified in points.

Software in the COM device converts character size specifications to "scope points.'

The COM device offers eight line widths (CRT spot sizes) and eight levels thus giving 64
possible character densities. It is our feeling that only three densities are actually

page 82 Knowledge Workshop Development - Reported as of 7/74

-^-"-T—"-^—

SR! ARC 30 JAN 76 5 34PM 22133

III NLS Subsystems
12 Output Processor

distinguishable in a final olTsct-pnnted product. Therefore, we offer only light, medium,
and bold.

Although the output file is different,the COM format is controlled by the same set of
directives for the source file control that controls format ror the lineprinter or other
non-spaced devices. In the majority of cases the system suppiles a default COM value
where needed in a directive couched in terms of a monospaced page. e.g.. it translates a
margin given in centimeters into spaces. When that occurs it is always possible to insert a
value for COM that differes from the value for mon' ^»ce devices. A certain number of
directives are meaningful only in the context of CON' !iosc that change type face. In
that case, the Output Processor ignores them when pi fi'e on monospace devices.

The Outpi'.t Processor produces a sequential file cmsis ...j. .>i V-bil bytes, packed five to a
36-bit word, left-justified (the low-order bit is wasted). This file is then copied to tape in
Los Angeles via the ARPA Network for processing on the CompSO.

Text is divided into line segements (an unbroken string oi characters in the same font, si/e.
etc.) each of which is preceded by one or more command bytf> followed by arguments.

The command bytes ire:

T : Output Line Segment

"2" : New Page (advance frame)

"3" : Insert Figure (e.g.. photograph)

V : End of Document

The Output Line Segment command bytu has the following arguments:

a) y -coordinate of line segment (2 bytesi

b) x-coordinate of left margin of line segment (2 bytes): This is the \-coordinate (in
thousandths of an inch) of the left edge of the leftmost character position in the line
segm f.

c) x-coordinate of right margin of line segment (2 bytes): This is the x-coordinate (in
thousandths of an inch) of the right edge of the rightmost character position in the line
segment.

Ilie x-coordinates actually address the position that lies between two adjacent character
positions. In other words, the x-right of one line segment may have the same value as the
x-left of the following line segment.

The Jusiification Code (one byte):

"0" . Set Line Segment left flush (ragged right)

"1" : Set Line Segment right flush (ragged left)

"2" : Center Line Segment between left and right margins

"3 iiil justification (vary space between words to make both right and left edges of
the line segment Hush with margins

Knowledge Workshop Dcvclopmenl - Rcporlcd as of 7/74 page 83

-

SRI ARC 30 JAN 76 cj 34PM 22133

III NLS Subsystems
12 Output Processor

Number of text segments in this line segment (one byte): A line segment may contain up
to 12J text segments, eaeh of which may be in a diflerent face, size, veight, etc. These text
segments are combined into a single line segment to permit consistent justification by the
CompSC.

Each text segment is preceded by the following information:

Type fact (one byte)

"0" : Messenger

"1" : Directory

"2" : File

3" : OCR-B

"4" : MNA Microfont

"5" : News Gothis

"6" : Times Roman

Type Size (two bytes)

The spacing in thousandths of an inch between the base lines of two adjacent lines.

Type Style (one byte where each bit, bl,b2...b7, has a unique meaning.)

Boldness (b6, b7)

"00" : medium (normal)

"0!" : light

"10" : bold

Slant (b5): If b5 is on, the characters in this text segment are slanted. Slanting
approximates the appearance of italics.

Underlining (b4): If b4 is on, a line is drawn under the text in this segment with a
boldness appropriate to that of the text.

Monospacing (b3): If b3 is on, the characters in the text segment are monospaced. If b3 is
ofT. the characters are proportionally spaced (if allowed in that font) or monospaced as
appropriate.

Character Count (two bytes)

Text (one byte per character)

The Insert Figure command byte has the following arguments:

a) Figure Number (three bytes): This is the unique (ARC Catalog) number assigned to a
photograph or drawing which is sulnitted in hard copy. The figure is merged into
offset-printed copy.

b) y-coordinate of center of figure on the page (two bytes)

page 84 Knowledge Workshop Development -- Reported as of 7/74

KH(3Ü JAN 7b 5 34PM .'.'i i 5

III NLS Subsystems
12 Output PfDCCVSOl

c) x-coordinatc of left edge of figure (two bytesj

d) x-eoordmate of right edge of figure (two bstes)

The resulting rruignetic ta[>e is seven traek. contains one file per document vvitli files

separated by EOF tape marks, and end-of-tape indicated by two consecutive EOF marks

Each file consists of an) number of fixed length (512 36-bit words) records Each word i'

broken into six 6 bit packets, each of which has one parity bit (using odd parit>)

NEW FEATURES SINCE THE PREVIOUS REPORT

Coding the Output Processor was essentially complete at the iime of the last report (13041,4dle3)

Development since then has consisted of limited refinements in directives, improving the

interaction wi: o.ir COM suppliers as noted below, and efforts to make the full power of the

Output Pro more available to occasional users

Sendprnii

The network c'.monstration room at the 1^72 International Conference on C puters and

Communication exhibited a large variety of termin both hard copv ar display [4] In

various wa\s we attempted to prepare our system to operate in that unusual environment I IK

m.>st substantial special programming was Sendormt. We anticipated «hat us»-rs at displavs

would want to be able to print files at various icletvpes and printers in the room without

interrupting their work

We wrote Sendpnm as a TENEX subsystem. In the r'Jst. a ust'r 0' our Output Processor

normally sent a processed file directly to the printer at ARC. But she has the option of putting

it in a file instead. The result is an ASCII sequential file in which the Output Processor

directives have been translated into spaces, carriage returns, etc . or character strings in the

case of, for example, headers, and page numbers. The user of Sendprint can .uldress TENEX

and ask that the file be printed either at the terminal she is working or a* a capmrcd TIP port

(usually belonging to a printer local to the user)

In that case Sendprint allows the user to suspend action until she can teach the jnniei and

to send form feeds or control the arrival of the text page by pag-..

NLS formats Journal items by means of Output Processor directives. Sendprint lias been used

extensively, in the last two years bv sites, such as Bolt Beranek and Newman and Rome Air

Developemenl Center who use the Journal extensively, and also bv sites, such a-* Rome.

generating documentation It has been used [5] to create otTse» plates of NLo documentation

i i London

Se dpnnt removes certain control characters needed bv line printers of the type used at ARC

The output of Sendpntit may be routed to a file and thai file is Hen suitable for certan.

operations that require ordinär) seuuentia! files, notably TENEX Sendmessage. Through

Sendprint it is possible to format a file in NLS and forward «t through Sendmessage

In the revised command language [b] Sendprint has become a normal NTS command

(Output Remote)

Knowledge Workshop Development Reported .i^ of 7/74 P-'P1'

SRI ARC JO JAN 76 b 34PM 221 33

III NLS Subsystems
12 Output Processor

Userguide

When the Output Processor directives were frozen in the middle of 1972 we published an
Output Processor User's Guide, [7] [8J. This guide introduces the operation of the Output
Processor, thoroughly describes the purpose and effect of each directive, and offers summary
tables of their operation and ex pics of seven type faces in regular, slanted, boldface, light,
and a range of from 6 to 24 p Several hundred copies have been distributed to those
interested in NLS and computer p. 'ication and is the most complex printing job attempted
through NLS in terms of type faces.

Automatic Formatting

NLS COM puts tools that approach in complexity the font box of a typesetter into the hands
of users accustomed for the most part only to th" format control that a typewriter offers. The
inexperienced user can acquire these tools gradually as his work requires them; but to allow
him the benefit of our more experienced users, some standard formats have been developed. To
enable someone to lay a complex format on a file without mastering all the directives involved
we have developed a series of formatting programs which insert directives to produce a given
appearance.

Users may apply such program by hand, or larger NLS systems may call them as procedural
steps in automatic documentation . roduction.

The first and most widely used formatter is called b> the Journal, and gives Journal documents
their characteristic appearance. Formatters are a step in the catalog production process [9]
where they produce oversized pages for photoreduct on.

We have recently established a format library where users may look at documents, choose a
format, and call a program t'.'ough the Programs subsystem to insert the required directives.
The library includes diverse layouts, such a. an Air Force Manual, which was designed for
microfiche dissemination and which varies widely from normal NLS usage.

APPLICATIONS

Via Lineprinter

Production of documents through our Output Processor has been routine at ARC during the
period of this contract. Examples include the previous report [3] including the headmafter,
which was produced through COM; the ARPANET Directories [14] and [13], the catalogs
of the NIC collections [12], the 1 NLS Users Guide [II], and the Network Resource
Notebook [10]. The catalog, the Resource Notebook, and User guides are documents of
several hundred pages with elaborate and, in the case of the catalog, highly various formats,
distributed to several hundred people, and on certain occasions updated in a controtleo
manner.

Via COM

Development Problems

Our files produced by the Output Processor to be printed via COM go as tapes to a vendor.
Data Dissemination System Incorporated in Los Angeles. Development of rjtpul from

page Kt- Knowlcdgc Workshop Development -- Reported as of 7/74

SRI ARC 30 JAN 76 b 34PM ?2133

111 NLS Subsystems
12 Out pul Processor

NLS (o COM has been a joint venture with DDSI. In August of 1972 we completed a set
of specifications [151. whieh we believed would allow them to interpret our output. Both
sides expected that routine produ''tion »vould be possible within a few months. In fact,
although a number of satisfactory documents have appeared and at reasonable cost to us.
production you could call routine is stili just over the horizon.

On the whole, we see the problems during this report period mostly with DDSI. We brieflv
discuss a few of them below. Note in their defense that DDSI is a producer of large-scale
copies of engineering data, blueprints, parts lists, etc.. that are highly repetitive in format
and undemanding in quality. For them we are a small customer asking for fancy work.

Problems Arising from Our Specifying Format

Numerous vendors mint from computer tapes In general, the CPU ' .hj vendor formats
from a character stream supplied by the customer. AN noted, we surpo a character stream
that contains all 'he formatting information needed to create copy. The advantage to us lies
in retaining control of a highly flexible formatting system. The disadvantage is that the
vendor must interpret our formatting and suspend his own n; v. DDSI's hardware
vector generator was built on the assumption that users wot *ed to know the actual
sizes of the characters it creates. But our code makes up justi. ^s; it has to know sizes
exactly. In initial setup and in the changes in software at DDSI a has proved difficult for
them to communicate the actual size and shape of the characters we specify out they form.

The format information in our text stream has also discouraged competition On occasions
we have tried to interest JPL [16] and Alphanumcrics, probably the leading service group
in this area, [17] in taking cur jobs. In each case they have given up because, in part, of
the expense both in programming time and at run time of working around their formatting
code to use ourv

Local Drafts

Transportation

ARC is near San Francisco and DDSI is in Los Angeles. There has been a continuing
problem of getting drafts back to authors quickly enough 10 check formes, particularly in
the case of documents that were not formatted autom;Mca!ly. or in the case of trial runs of
automated formats.

Transportation to Los Angeles runs quickly and smoothly through the ARPA network
Files processed at ARC go by the File Transfer Protocol, usually in the evening, to USC's
Information Sciences In: ''»te, which is only a few blocks from DDSI. At the Information
Sciences Institut • an operator puts them on tape and a messenger from DDSI p^ks them
up, usually the toil, •' mg morning.

At various times throjghout the lel.-.tionship. DDSI has committed itself to different
minimum turn-around imes. from 48 to 96 hours DDSI's equipment normally produces
35mm microfilm. For draft purposes. DDSI makes a Xerox copyflow proof which is mailed
to ARC. preferably by United Parcel. Returning proofs may take two days in the mail and
have frequently been misaddressed. Sending proofs to Bast Coast users takes
correspondingly longer

Kncwlcdgc Workshop Development ■- Reported as of 7/7s page K7

SRI-ARC 30 JAN 76 b 34PM 22133

III NLS Subsystems
12 Outpui Processor

Proposals for Special Devices.

We have considered the possibility of an LDX transmitting from Los Angeles or of a
low-quality front-end processor at ARC for proof purposes which could easily be
constructed based on DDSI equipment [18], but the volume of business has never justified
it.

Other Exemplary Problems

Missing Lines

Early samples from DDSI showed missing lines. The problem appeared intermittently. They
asserted that the problem lay in the hardware character generator. Several attempts to fix
the character generator in place failed and in December of 1972 [19] they demanded that
the manufacturer, Information International Inco;porated, redesign the hardware. At that
time DDSI stopped paying rent to III pending this upgrading. Whatever the cause, it was
April of 1973 before DDSI's hardware printed reltibly all the lines we sent it.

Underlining

The history of underlining is similar to that of missing lines. It involved changes in their
hardware. Underlining was not fully operational until the summer of 1973.

Justification and Character Spacing.

Justification is the process of making the margins of the text even on both the left and right
side Printing systems justify L<es by varying the size of the white space between letters or
words and occasionally by varying the width of the letters themselves.

Any type face may be monospaced as on most typewriters and line printers; that is. the
width taken up by each character and its white space is the same ("w" takes the same
space as "i") or it may be difTercntially spaced as in this report and most books. With
occasional exceptions as noted beiow. monospace faces can justify only by adding whole
character spaces between words.

Originally, five of the se en type faces DDSI offered were monospaced Times Roman and
News Gothic were difTerentially spaced.

As noted, the ARC Output Processor knows the size of DDSPs characters and spaces and
performs the calculations necessary for justification. It would be tedious to recount the
details, but correct, full justification by means of spacing between characters and words was
anticipated in the fall of 1972 [15] and was not implemented u itil the summer of 1973
The solutions ».artly involved hardware changes in their character generator.

Spot Size

A spot of light creates the characters on the CRT by outlining them in the case of the
monospaced stick fonts, and by painting the characters in small strokes in the case of the
graphic arts fonts. Times Roman and News Gothic. DDSI had originally anticipated
forming chaiacters of all font sizes and several levels of darkness (boldness) by varying the
intensity of the painting process. Early attempts a graphic arts faces came out very muddy
(sec the header pages of the previous report t[3J. and if eventually proved necessary to

page M Knowledge Workshop Dcvclopm'-nt •- Rcporud as of ''/lA

L_^

--

SKI ARC 30 JAN /b 5 34PM 22133

III NLS Subsystems
12 Outpuf Processor

reduce the intensity of the spot on small type sizes. [20] We later gave up the attempt to
specify more than the usual three levels of print intensity (light, medium, and boldface).

A f int Problem

During 1^73 we added a directive called Dotsplit. If you put Dotsplit bergen two pieces
of text, the Output Processor sends one piece of text to the left margin, ine other to the
right margin, and inserts the right number of dots between them. The directive i«- very
useful, for example, for creating tables of contents.

As ARC first implemented the directive, each dot went to DDSI as a separate line segment.
A line segment takes a second or two to pass through their CPU. The first time we sent
them a table of contents, the DDSI operator reports bystanders though» their equipment
had broken, and tiny lignt leaks in the camera box, normally trivial becarse of the speed
with which the film passes through the box, became a serious problem. Ai their request we
recoded Dotsplit so the whole line of dots is one line segment.

Halftones and Drawings

DDSI can produce graphic output and can, for example, mimic a Calcomp Plotter [21],
but ARC cannot yet call for anything but ASCII characters.

DDSI is able to merge text with halftone (shaded) illustrations via their MISUR system,
which digitizes the source halftones We have never used MISUR because of the cost, about
^50 per halftone [21].

We have set up directives to shape white spaces sized to correct dimensions for a given
illustration on the page. DDSI has attempted to superimpose those illustrations on their
film output via a flasher of the sort normally used to impose forms on microfilm output,
but the quality proved poor. At present we direct proper white spaces in the output and
provide illustrations to the printer who merges them with the camera-ready copy in the
r.ianner usual in offset printing.

If halftones were required in a document to be distributed in microfilm form, we would
have to devise another arrangement.

Printing

Normally the output of DDSI s equipment is 35mm microfilm. For proof purposes they
make copyflow pages and mail them to ARC. For printing r urposes they supply us with
camera-ready copy (KP-5's) [21]. In either case they retain the microfilm in their
specialized storage facilities. On some occasions in the past they have subcontracted the
printing job and supplied us with printed copies. That option is open in the future.

Costs

DDSI's price for providing page images on microfilm is between two and three dollars per
output page; copyflow proofs are ten cents more, camera-ready cony costs a title over half a
dollar per page. There ;;re additional charges for picking up tapes from ISI and i minumum
per job. In general this is not an expensive output medium.

K mm ledge Workshop Devdopmcnl - Reported as of 7/74 page S^

, jmmmmmM

SRI ARC 30 JAN 70 5 34PM 22133

III NLS Subsystems
12 Output Processor

An arrangement has been made for DDSI to bill Network Users directly, but it has not yet
been used [22].

Accomplishments

At the time of writing, three documents have been printed through COM that have been
disseminated widely, the Output Processor User's Guide, which demonstrates the full range
of type faces and sizes, and two papers. Coordinated Information Services for a Discipline
or Mission-Oriented Community [24] and The Augmented Knowledge Workshop [23].

A feeling that it is difficult for documents COM'd through our system to meet deadlines is
chiefly responsible for other standard ARC publications bypassi g COM. Users see first
the turn-around delay of four to ten days for sample proof copies. In general the delays
result from DDSI's production schedule and from the travel time of copy proof from Los
Angeles. However, extra delays have occurred when features, often small but important,
like underlining, did not work as advertised and work was delayed while DDSI (or ARC)
reimplemented them.

One unusual application is business cards for ARC staff. To our knowledge they are the
only business cards available as an online file [25].

At the time of writing, test runs jf two user manuals were taking place. They promise to be
the largest documents produced at ARC through COM, the first created on other systems
lo be printed via NLS, and, in one case, the first output to microfiche. [26][2?]

FUTUPE DEVELOPMENTS

Computer composition and the allied field of "word processing" are generally in a period of
rapid technical change. It is not difTicült fur us to imagine improvements in our Output Processor
system [28]:

1. A system that would be able to look ahead in composing each page, and thus compose
footnotes, glossaries, etc.; a system that would make two passes through the document and
thus be able lo make a paged index and references, etc.

A two-pass system is more expensive in CPU time and only occasionally useful; it should be
an alternative.

2. Directives invisible to the users, but present in the file in. for example, the manner of
markers.

Parts of highly formatted files, like the ARPA Network Resource Notebook, are unreadable
online because of the profusion of directives. We resort to the cumbersome procedures of a
separate file to read online and another to print from, with attendant maintenance
problems.

3 Proofs available rapidly near the user's terminal.

4. A display system whereon the page appears as it would appear printed.

Such a display would be usefui even if it did not show real fonts, h it only layout.

page 90 K-.nvUcdgc Workshop Dtvelopmeni -- Reported as of 7/'4

SRI-ARC 30 JAN 7t 5 34PM 22133

III NLS Subsystems
12 Output Processor

5. As a step beyond ihe forrmtting programs, an inte active subsystem that would allow the
user to instruct the system about layout via simple English words and graphic devices rather
than by writing in bits of code (the directives).

Such a system should be able to guide the user by questioning her intelligently about her
wants.

6. A forms system that allows the user to instruct NL > in the layout of an external form and
to subsequently call for given files or other units of Jata to be printed into the proper boxes in
instances of that form [29].

We believe that such improvemeutN will come most usefully from the development work of a
commmunity of organizations using NLS for the purpose of developing, producing, and
controlling documentation. The present use of NLS to produce manuals for other systems, plus
inquiries from possible users who need to publish, indicate that a potential community exists
[30].

ACKNOWLEDGMENTS

Credit should be given to Walter L. Bass and Bruce Parsley, who did the fundamental
programming for the Output Processor.

REFERENCES

[1] (12b2bl) SRI-ARC. Tree Meta Report - Preliminary Report, Formal Description.
Augmentation Research Center, Stanford Research Institute. Menlo Park, California
94025. 23-JAN-73. (14046,)

[2] (12b2bl) SRI-ARC. Tree Meta Report - Preliminary Draft Augmentation Research
Center. Stanford Research Institute, Menlo Park, California 94025. 23-JAN-73.
(14045,)

[3] ((12dla) (I2d2a5dl) SRI-ARC. Online Team Environment / Network Information Center
and Computer Augmented Team Interaction. Augmentation Research Center, Stanford
Research Institute, Menlo Park, California 94025. 6-MAR-73. (13041,)

[4] (12c2a) Michael D. Kudlick. Overview of NLS for ICCC. Augmentation Research Center,
Stanford Research Institute, Menlo Park, California 94025. I3-OCT-72. (1220?,)

[5] (12c2c) Stephen R. Wilbur. Problems with SENDPRINT. Augmentation Cesearch Center.
Stanford Research Institute, Menlo Park, California 940^5. 28-NOV-73. (20594.)

[6] (I2c2e) No Author. NLS-8 Command Summary. Augmentatirn Researcl Center, Stanford
Research Institute. Menlo Park. California 94025 20-r£B-73 (14537,)

[7] (12c3a) No Author. Output Processor Users' Guide Index Augmentation Research
Cente. Si.nford Research Institute, Menlo Park, California 94025. 23-AUG-73.
(12215.)

1 ?9

;: g:

::gr

I?» 3

?f S

Knowledge Workshop Development - Reported as of 7/74 p-gc*»!

_, .J-^,—. tmm

SRI -ARC 30 JAN "6 5 34PM 22133

III NLS Subsystems
12 Output Processor

[8] (12c3a) No Author. Output Processor Users' Guide: Introduction. Augmentation Research
Center. Stanford Research Institute, Menlo Park. California 94025. 23-AUG-73.
(12209.)

[9] (>2c4c) Walter L. Bass. Catalog Production Processor System Guide Augmentation
Research Center. Stanford Research Inst'tuic. Menlo Park. California 94025.
23-AUG-73. (12209.)

[10] (12dla) NIC. ARPA Network Resource Notebook. Augmentation Research Center.
Stanford Research Institute, Menlo Park, California 94025. l-MAR-72. (6740,)

[11] (12dla) Jeanne M. Beck. TNLS Users' Guide Augmentation Research Center, Stanford
Research Institute, Menlo Park. California 94025. 28-NOV-73. (19200, >

[12] (12dla) NIC. Current Catalog of the NIC Collection. Augmentation Research Center,
Stanford Research Institute, Menlo Pa k, California 94025. l-MAR-72. (5145,)

[13] (12dla) NIC. Arpanet Directory. Augmentation Research Center. Stanford Research
Institute. Menlo Park. California 94025. JAN-74. (22979.)

[14] (12dla) NIC. Arpanet Directory. Augmentation Research Center. Stanford Research
Institute. Menlo Park. California 94025. JUN-74. (19275,)

[15] (12d2al) (12d2a5c4) Walter Bass. Specifications for the Interconnection of an ARC and a
DDSI. Augmentation Research Center. Stanford Research Institute, Menlo Park.
California 94025. ll-AUG-72. (11382.)

[16] (12d2a3b) Dirk H. van Nouhuys. JPL Continues to Nibble at COM. Augmentation
Research Center, Stanford Research Institute. Menlo Park, California 94025.
30-JAN-74 (12878,)

[17] (12d2a3b) Dirk H. van Nouhuys. Status of COM: Meeting with Jerry Shaw and Tony
Sunley of Alphanumeric. Augmentation Research Center, Stanford Research Institute.
Menlo Park, California 94025. 6-JUL-73. < 17691, >

[18] (12d2a4bl) N. Dean Meyer. Talk with DDSI - Jan 4, 1973. Augmentation Research
Center, Stanford Research Institute, Menlo Park, California 94025. 4-JAN-7:.
(13677,)

[19] (12d2a5al) ^>irk H. van Nouhuys. Printing by COM (Computer Output to Microfilm).
Augmentation Research Center, Stanford Research Institute, Menlo Park, California
91025. 19-DEC-72. (13422,)

[20] (I2d2a5dl) Dirk H. van Nouhuys. Development of Computer Output to Microfilm --
Current Status. Augmentation Research Center, Stanford Research Institute, Menlo
Park, California 94025. 28-NOV-72. (13047.)

[21] (12d2bl) (12d2b2) (I2d2cl) Dirk H. van Nouhuys. Output Processor User's Guide and
DDSI S:rvres. Augmentation Research Center. Stanford Research Institute, Menlo
Park. California 94025. ll-DEC-73. (20847.9e)

: .■ g::

page ^2 Knowledge Workshop Development • Reported as of 7/74

- -—-—

--

SRI- ARC 30 JAN 76 5 34PM 22133

III NLS Subsystems
12 Output Processor

[22] (12d2d2) Dirk H. van Nouhuys. DDSI, Billing NON-arc Users, Net Ambitions
Productions Status. Augmentation Research Center, Stanford Research Institute. Menlo
Park, California 94025. 23-MAY-73. (16787,) ••9::

[23] (12d2el) Douglas C. Engelbart, Richaid W. Watson, James C. Norton. The Augmented
Knowledge Workshop. In AFIPS Proceedings. Vol. 42, 1973 National Computer
Conference, pp. 9-21. 1973. (14724,) M^

[24] (12d2el) Douglas C, Engelbarl. Coordinated Information Services For A Discipline- Or
Mission-Oriented Community. Augmentation Research Center, Stanford R" :h
Institute. Menlo Park, California 94025. Paper presented a: Second Annual Co iputer
Communications Cuiiferci.ee, S^n Jose, Californu, 24 January 1973. 12-DEC-72.
(12445,) .9::

[25] (12d2e3) N. Dean Meyer. Business Cards for COM. Augmentation Research Center,
Stanford Research Institut-, Menlo Park, California 94025. 2-JUL-73. (17597,) i.^rs

[26] (12d2t4) Dirk H. van Nouhuys. Publishing a JOVIAL Manual through COM, Comments
and Questions. Augmentation Research Center, Stanford Research Institute, Menlo
Park, California 94025. 28-FEB-74. (22140,) ^9-

[27] (12d2e4) Elizabeth A. Riddle. NSW Microfiche Format. Augmentation Research Center,
Stanford Research Institute, Menlo Park, California 94025. ll-JUL-74. (23596,) -«r

[28] (12el) N. Dean Meyer. The Ultimate Format Designer. Augmentation Research Center,
Stanford Research Institute, Menlo Park, California 94025. 30-AUG-72. (11649,) .9.«

[29] (12elf) Elizabeth K. Michael, Harvey G. Lehtman. Staged Forms System. Augmentation
Research Center. Stanford Research Institute, Menlo Park, California 94025.
6-FEB-74. (21808,) •.'9.«

[30] (12e2) Douglas C. Engelbart. SRI and a DDPCS Communiiy. Augmentation Research
Center, Stanford Research Institute, Menlo Pa-k, Calikbrnia 9402^. 6-MAR-7f.
(23702,) !?93c

Knowlrdgc Workshop Dcvclopmcni -- Reporled as of 7/74 page 93

1^—r T—-,■■ -■ ~T- ^—"-rr-^r-—-^i rtr - *

SRI ARC 30 JAN 76 5 34PM 22133

Recorded Dialog: the NLS Journal, Identification, and Number Systems
(by James E White)

OUR CONCEPTION OF RECORDED DIALOG

Recorded Dialog

One of the prime objectives of the augmentation system developed at ARC is to aid
collaborating knowledge workers by providing flexible computer tools and methodology for
communicating with one another. We collectively refer to such tools and a methodology as a
Dialog Support System (DSS). Its primary task is to provide mechanisms for transmitting
online messages and documents between users. However, for large projects or those about
which some larger community of users must remain informed, the dialog soon becomes
unmanageable without additional compuhr aids. ARC's DSS therefore I) permanently records
(copies to read-only storage), Z) number* (assigns a unique accession, or catalog number), 3)
and catalogs (records author, title, number, and location) each piece of dialog-for later
consultation, for reference by later jJjcuments, and for examination by interested bystanders.

The Journal

ARC's DSS is implemented as a set of computer processes called the Journal, consisting of a
foreground subsystem that interacts with the user and provides primitives for entering a
message or document in the Journal (with title, author and other information), reserving
catalog numbers, and so forth; and a background process that further processes submission
requests and delivers mail to the addressees indicated by the author. The Journal is supported
by several additional systems an Identification System responsible for maintaining information
about users-their location, group memberships, phone numbers, and so forth--and a Number
System responsible for keeping track of which catalog numbers have been assigned, and to
whom, and which are available for future assignment.

Since its implementation in April of 1^71, the Journal has been heavily used (now containing
over 10,000 messages and documents), initially by the ARC staff, then by a larger user
community with network access to ARC's computer facility, and most recent'y by commercial
and government users of a second computer facility operated for ARC. The Journal has
evolved as a result of our experience and in response to the increased demands placed upon it
by its growing user base. This section describes that experience and evolution.

OUR INITIAL IMPLEMENTATION

The ARC/NLS Environment

ARC's DSS resides on a heavily loaded Digital Equipment Corporation (DEC) PDP-10
running Boh, Beranek, and Newman's (BBN) TENEX operating system. TENEX provides a
time-sharing environment in which 10 to 20 users independemly interact with any of a variety
of applications packages calied "subsystems." ARC's PDP-10 is devoted almost exclusively to
providing access to a single subsystem, NLS fl], a comprehensive system of tools for
manipulating structured text.

Knowledge Workshop Development - Reported as of 7/74 page 95

Preceding page blank

SRI-ARC 30 JAN 76 5 34PM 22133

III NLS Subsystems
13 Recorded Dialog

NLS provides a very general set of primitives for manipulating and viewing tree-structured text
files. Commands are provided for manipulating the tree's structure, e.g., for adding nodes
called "statements" to the tree, for deleting single statements or whole branches of the tree,
for moving or copying a subset of the tree from one location to another, and so forth.

In order to maintain flexibility in the first implementation and to facilitate maintenance of the
system, NLS text files were consistently used in implementing the Journal. Identification, and
Number Systems' principal databases, as well as for catalogs, indices, and a variety of internal,
inter-process communication files.

Structure

The Journal

The Journal System is a set of procedures that runs in both foreground and background
modes to maintain a database of recorded documents, and to distribute them to specified
addressees.

Larger Journal documents are stored as separate files in a set of system directories. Short
documents, called "messages," given special treatment in the interests of economical
storage, are stored in a set of (currently about 20) files, several hundred to a file.
Whenever a document remains unreferenced for a month, it is archived to magnetic tape by
TENEX, and its online storage released for other use. Although over .0,000 items have
been journalized on the PDF-10 Hnce April of 1971, most have long ago been archived and
therefore do not occupy online storage, excep* when brought back for reexamination.

The Journal maintains a system catalog of all recorded documents, implemented as a set of
(currently five) online files. The catalog contains information used by NLS to locate a
Jonrnal item given its catalog number, as well as information used by stand-alone programs
to produce nonsystem catalogs and indices (by author, titleword, and number).

Journal mail addressed to a particular user is delivered in one or both of two delivery
modes, online and hard copy. The delivery parameters are selected by the addressee and
maintained by the Identification System. A document's author neH know nothing about
the delivery modes of its addressees.

Online Delivery

Regular users of NLS normally receive online delivery of all their Journal mail. Fach item
is placed by the Journal in a special NLS file called the user's "initial" file (so namtd
because the file's name is the user's ider.t. which is usually his initials). For convenience,
this file is automatically loaded for the user when he enters NLS. The text of short
messages is delivered to the user in its entirety. For longer items, only a citation giving the
document's author, title, and date, and a convenient, machine-readable pointer (called a
"link") to the text of the document are delivered.

Hard Copy Delivery

Hard copy line printer output is sent by U.S. mail to users who never or only infrequently
use NLS or who, for on.* reason or another, want it in place of. or in addition to. online
delvery. A substantial amount of clerical support is required to support hard copy delivery.

page 9b Knowledge Workshop Devclopmcnl -- Reported as of 7/74

SRi ARC 30 JAN 76 5 34Piv1 22133

III NLS Subsystems
13 Recorded Dialog

The Journal maintains information about ongoing distribution operations in a single NLS
file, used also as a vehicle for communication between the submission and distribution
components of the background system. : <

The Identification System

The Identification System is a set of procedures that maintains a large database,
implemented as a single, very large NLS file, containing information about individuals,
groups of individuals, and organizations (each of which is assigned a unique name called an
"ident"). Various information fields are maintained for each ident, and procedures are
provided for manipulating t ich Held.

The Identification System includes an NLS subsystem that permits users to interrogate and
modify the database themselves, subjeci to the appropriate access controls. :

Because of the database size, and because updating the database involves creation of a new
version of the file (requiring about 30 seconds or more of real time on a loaded system), all
of the changes for a particular ident are collected from the user before the file is updated.

The Number System

The Number System is a set of procedures that manage a database, implemented essentially
as a single NLS file, containing information about the assignment of catalog numbers to
Journal documents. The database contains:

lj a number of blocks of numbers available for assignment

2) a list of assigned numbers (either recently used, assigned but as yet unused, or in the
process of being used) and for each the date and time of assignment and the idents of the
users to whom they were assigned.

It is often useful to know in ad ance what number will be assigned by the system to a
particular Item. This is necessary, for example, to create a set of documents that internally
reference one another. A catalog number may thdefore be reserved for later submission, or
"preassigned."

The RFC number system, a separate special-purpose number system patterned after the
master system (and thus able to use most of the same primitives), was implemented at the
request of an informal group of network protocol developers. An item may have an RFC
number in addition 10 the master catalog number.

FXPERIENCE AND PROBLEMS

A number of problems with the initial Journal implementation have been encountered and
attacked. Some of the major problems are described below.

Excessive real-time required for submission:

In the initial implementation, the entire submission process, with the exception of delivery,
was performed in the foreground and therefore kept the user from other work for what
often, given the system load, proved to be an inordinate amount of time, in an attempt to
alleviat«* this problem, the submission mechanism was restructured, and all manipulation of
catalog, distributiop. and storage files deferred to the background process.

Knowledge- Workshop Dcvclopmenl - Reported is of 7/74 page ^7

•-irrrrrr*-^ -°i- —--r*

■

- -

SRI ARC 30 JAN 7b 5 34PM 22133

III NLS Subsystems
13 Recorded Dialog

A special system directory was established for queuing submission req'iests for the
background process that now goes through two distinct phases. First, all queued
submissions are processed, numbers are assigned where necessary, the document is slored in
the appropriate message or separate file in the appropriate system directory, the document
is cataloged, and a distribution request is queued. And second, vs tever distribution
requests have accumulated are process-d, one addressee at a time.

To further reduce the amount of processing that must take place in the foreground, a form
of submission is permitted in which the task of assigning a catalog number is deferred to
the background process. Deferred submission is the default, and most submissions are
therefore of this type. Since deferred submission does not require write access to any
system files, a user can submit an item in this mode ai any time, regardless of the state of
the Journal or Number System files.

Background delivery degraded system performance-

The Journal background process has proven to be very expensive to run, and often has had
a detrimental efieet upon the responsiveness of the system as viewed by its interactive users.
We have experimentally varie ' " frequeney with which the background process runs (and
thus with which mail is deli from onee per day initially, to its current frequency of
once every hour.

The background process now periodically checks the load average (the TEN EX monitor's
measure of system demand) and suspends processing if it is above some predetermined
cLt-off value. Processing is resumed only when the load average drops sufficiently. The
check i:, performed at a point In the process when the system files are consistent and least
vulnerable to a crash. Between these check points, the process runs at high priority.

The benefits of this strategy are threefold: the background process does not add appreciably
to the system load when «t's already high; it can exploit slack times throughout the day; and
since the probability of a crash increases with system load, the Journal and Number System
files are usually in a relatively invulnerable stai- when a crash occurs.

Databases vulnerable to system failures:

A very serious problem of the initial Journal implementation was the vulnerability of the
various system files to hardware (especially disk) problems, monitor crashes, and exhausted
disk storage. The processing of hard copy output, besides being time consuming, was
similarly vulnerable to both software and hardware failures.

The danger of losing system files because of lack of disk storage has been greatly reduced
by also checking for available disk space at the same time the load average is checked.
Processing is terminated until the next hour if space is too low. This strategy prevents
losing a system file due to exhausted disk space during a file update.

A number of problems assoeiated with the processing of hard copy output have been
largely eliminated. A variety of monitor bugs have been fixed or avoided. The bulk of the
processing is done during the evening or early morning hours. Because of the volume of
haid copy output produced by the Journal, the print requests were first placed on magnetic-
tape and printed on an IBM 360 system elsewhere at SRI. and finally contracted outside of

page 48 Knowledge Workshop Development - Reported as of 7/74

SRI-ARC 30 JAN 76 5J^PM22133

111 NLS Subsystems
13 Recorded Dialog

SRI Network delivery, described in the next section, has, on the other hand, drastically
reduced the volume of hard eopy produeed. and thus recently permitted us to resume
printing on our own system at OFFICE-1.

EXTENSIONS FOR A NETWORK ENVIRONMENT

The ARPANET Environment

In July of 1970, ARCs PDP-10 became part of the ARPANET, now an international network
of large-scale computer facilities called "hosts" linked by 50 kb communication lines. Once
the lowest level, inter-machine communication protocol was developed, the central task was to
design and implement the software protocols required for general, inter-process
communication, and other, more specialized exchanges. This task was undertaken by an
informal group of geographically separated systems programmers called the Network Working
Group (NWG).

In early 1969, ARC had offered to serve as the Network Information Center. As soon as
hardware connections were made and protocol development reached a stage sufficient to
permit simple, teletype-like use of a remote time-sharing system, ARC began to provide dialog
support for the NWG via the Journal.

Journal Changes to Support the Network

At first, the Network user used the Journal in nearly the same manner as a local user. Like
local users, he had to login to the ARC system and use NLS to compose and journalize a
document. But unlike most local users, he received hard copy, rather ;han online delivery of
his Journal mail. When ARPANET protocols developed to the point of permitting the
transmission of text files and mail to users at remote hosts via the Network itself, the Journal
was modified to utilize this new capability.

Network Delivery

The File Transfer Protocol (FTP) [2] devised by the NWG permits the transmission of
text to a named mailbox" at a remote host. For purposes of receiving mail, therefore,
each Network user has a network address consisting of a host name and a mailbox name
To exploit this new Network capability, we added a third, network delivery mode to the
existing online and hard copy modes, storir«? a network address in the ident file for each
Network us T. A Network user can thus i. ke delivery of all Journal mail addressed to
him, in his own system, simply by storing the appa prbte delivery parameters in the
Identification System.

Rather than deliver extremely long documents in their entirety, via the Network, we made
the same size distinction for network delivery as for online delivery, sending only citations
for long documents. We modified the FTP software supplied by BBN to recognize a
distinctive pathname (that the Journal provides with the delivered citation) that, when used
to retrieve Journal documents, invokes conversion >f the tree-structured document to
sequential form before transmission through the Network A Network user can thus
retrieve the full text of any Journal document sent to him.

Knowledge Workshop Development ■■ Reporlcd as of 7/74 page 99

SRI ARC 30 JAN 76 5 34PM 22133

III NLS Subsystems
13 Recorded Dialog

Network Submission '

The fact that the Network user had to explicitly connect to and login at ARCs POP-10 to
enter a document into the Journal, and that he had to compose the document using NLS,
complicated life for some users, forcing them to learn the d tails of NLS, in which some
had only one, specialized interest.

To alleviate this problem, we implemented a facility that permits users to journalize
documents composed via their local editor without explicitly connecting to the ARC system
or logging in, and without any knowledge of the NLS command language. We did this by
Turther modifying BBN's FTP software to recognize a special mailbox name of the form
"authors/addressees" and to interpret it, in the context of a mail delivery, as a Journal
submission. The ident lists of "authors" and "addressees" are verified by NLS, running
beneath the FTP program in an inferior fork. If the ident lists aic found correct, the
"mail" is immediately journalized. Thus the remote user can journalize a document using
the normal, Netwck mail facility provided by his system.

EXPERIENCE AND PROBLEMS

The Journal's Network submission and delivery facilities have been in operation since
mid-1973. The latter has sufTered from a few, relatively minor problems. Network addresses,
for example, are not well understood by some users who, «n attempting to modify them
themselves, have frequently modified them incorrectly. In such cases, delivery of the user's
mail is prevented until the error is discovered and corrected by ARC personnel. Because of
this, almost all identification changes are now done by ARC star. Many users are unwilling
to explicitly retrieve the text of long documents for which they are sent only a citation, even
though the retrieval process is straightforward, even automatable.

The submission facility suffers from more severe problems, one of which is that the ident
verification and journalization processes are very time-consuming and must be completed
before the user's request is acknowledged and he is "set free." A more satisfactory strategy
would be to queue the request and acknowledge it immediately, releasing the user for other
work, and then to perform the expensive process-s in background mode, with a Network
message sent to the author in ^ase of fai! jre.

A second problem is that ihe conversion that the Journal must make between the sequential
text Hie presented by the user and the tree-structured NLS file required by the Journal is often
unsatisfactory to the user. We believe this to he a very difficult problem to soive, one perhaps
best handled by permitting »he inclusion of sequential files in the Journal database, thereby
eliminating the need for conversion.

A final problem is the inadequacy of the mail subset of the FTP, which makes it diificult or
impossible for the user to transmit any of the optional parameters supported by the Journal,
and which forces the user interface to remain somewhat artificial. ARC has proposed a
separate mail protocol [3], but no protocol development is Deing carried out in that area at
present.

page 100 Knowledge Workshop DevcU.pmcnt -■ Reported as of 7/74

runn——^"

SRI ARC JU JAN 7b 5 34?M 22133

III NLS Subsystems
13 Recorded Dialog

EXTENSION IG A DUAL-SITE SYSTEM

The SRI-ARC Utility EnvironmenJ

In January of 1974, ARC began operation of a second, "utility" PDP-»0 system we call
OFFICE-1 to provide NLS support in a stable environment to what has proved to be an
ever-growing clientele. The facility is operated for ARC by Tymshare, Inc. from Cupertino,
California. Like ARC's own PDF-10, OFFICE-1 is connected to the ARPANET, through
which rrost of its users gain access to it. The Utility's software configuration is essentially
identical to ARC's. providing the full range of NLS service to its users. One such service is,
of course, the DSS ■ ^

In oroviding Journal se.vice from the Utility, we decided to include that second system within
the domain of what is conceptually a single Journal spanning both the ARC and Utility
machines That is, rather than simply replicate the software, thereby creating a second,
independent system, we decided to couple the two DSS systems, making all items journalized
from either system available at both and addressable to users resident on either machine.
Thus, for example, we employ a single Ident File, but maintain it in duplicate. * =

Structural Changes

In implementing a dual-host Journal, we were somewhat pressed for time and therefore
decided to design and implement an interim system and later replace it with a more efficient
anH carefully thought-out implementation. *■'■

The interim dual-host Journal we decided upon involves duplicate Journal, Identification, and
Number Systems, cognizant of each other at only a few points in the code. The two systems
communicate with one another through the ARPANET via FTP. V^e impleipcntcd a special,
assembly-language module to perform the FTP operations on NLS's behalf, since the
corresponding FTP software provided by BBN is neither designed to be called by another
program (since it's implemented as an interactive subsystem) nor structured in such a way thai
the relevant subroutines can be easily extracted. The portk.n of BBN's FTP software that was
retained has been modified to deal T.ore satisfactorily with NLS files, which have blank spots
in their address space "

Two Journal Systems ^

Each submission request, regardless of its source, is fully processed by the Journal System
on each machine. Each system's Journal catalog and document files, though in a sense
maintained independently, are always identical (neglecting the obvious time lag). To avoid
duplicate delivery of each Journal item, as would naturally occur as a consequence of
duplicaMng the submission "equest. we partitioned the idents, assigning responsibility for
delivering mail to any parcular user to (in mos; cases) just one of the two systems—the
one on which the user does most of his work. '^

Submission requests are duplicated in thj folk wing manner; The background process on
each system, before processing recent submissions, moves any files in the other host's
special communication directory (OUTJOURNAL) to a local submission queue directory
(TEJOURNAL), thus adding them to the list of local submissions to be processed. Then,
in processing that list, a copy of each submission request, except those obtained from the

Knowledge Workshop Dtvclopmenl - Reported as of 7/74 page 101

■ - ■■ ——

SRI ARC 30 JAN 76 b34PM2213J

III NLS Subsystems
13 Recorded Dialog

second host, is queued for the other system in the local communication directory
(OUTJOÜRNAL again).

Two Identification Systems :1=

To simplify the task of uniting the two Identification Systems, we bypassed the problem
entirely by permitting additions and modifications from only one machine. The other
machine is periodically sent an updated copy of the entire database. '■ <*■■

Two Number Systems '-

The two Number Systems function independently, each assigning catalog numbers from a
separate block. Numbers preassigncd on one machine must be used on that machine, and
the RFC Number system is available on only one machine. ^3

EXPERIENCE AND PROBLEMS

Aside from the obvious inefficiency of duplicating each submission on ^
even though the item may be of only local interest, there have been no sc.
our interim implementation.

• remote machine
)us problems with

An occasional asynchrony problem arises as a result of the time delay between an addition or
modification to the ident file and receipt of the modified version of the database at the second
machine. For instance, an ident could be added to the Identification System, a Journal item
seilt to him from that machine (which already knows of his existence), and the item could
reach the remote sy „m via FTP before that system becomes aware of his addition to the
system, causing an a*or in the remote system's Journal delivery function.

The mos^ common problem with the dual-host system is Network transmission errors du-ing
file transfers. Such failures cause the item being transmi'ted to be delayed until an operator
finds the file ir an unusual state on the source machine. He must then check the destination
system to verify that the file has not in fact arrived, which is the usual case, and then requeue
it for transmission. Since occasional Network failures are inevitable, we are attempting to
enhance the performance of the dual-host system by automating the detection and requeuing
process.

The redundancy of information within the dual-host system is occasionally useful for
reconstructing data lost due to a malfunction of the file system. A backup of the file system
recently experienced by the Utility cost no more than reconstruction time; no Journal files
were lost.

PRIVATE DIALOG

Coming to Grips With the Problem

From the outset, one of the design goals for the Journal has been to provide an atmosphere in
which memos, formal design documents, proposals, and other items once published, would
thereafter be readily accessible to anyone who cared to consult them. Author and subject
indices are periodically produced and anyone, whether an active participant in the dialog or
not, can therefore browse through the list of items authored by a particular individual or

p.;c 102 Knowledge Workshop Development -- Reported as of 7/74

SRI ARC JO JAN 76 5 34PM 22133

III NLS Subsystems
13 Recorded Dialog

written on a particular subject, skimming or reading in full any items that look useful or
appealing to him.

This model of dialog was appropriate for the system's initial user community, ARC itself,
where subgroups working on highly interrelated tasks must keep abreast of one another's
activity. As the Journal's i!sei community grew to encompass researchers throughout the
ARPANET, the model remained for the most part appropriate. Again the participants were
engaged in separate but interrelated subtasks of a single, large project (i.e.. ARPANET
protocol design and implementation), and each working group had legitimate (and often vital)
interest in the work of the others. But with the extension of the Journal to a dual-host
system, a new class of users became invclväd. Many Utility users, though anxious to u.e the
Journal as a dialog support aid, were not at all anxious to have all of their dialog (including,
perhaps, personal correspondence, new product information, and so forth) accessible to the
general public. Thus ARC was compelled to address itself to the problems of nonpublic, or
private dialog, and to provide support for it through the Journal.

Changes to the Journal

What follows is a brief discussion of the more fundamental implementation problems that we
encountered in tackling this problem; the reader is referred to [4] for a more detailed
statement of the Journal changes made.

Three tests must be applied in establishing a user's right to view a recorded document:

1) Who is requesting access to the document?

2) Has he explicitly been granted access to the document?

3) Is he a member of any group (perhaps by way of one of more levels of indirection) that
has been granted access to the document?

Who is the Requestor?

The Journal has always tolerated im^osters, simply accepting the user's word for the ident
he declares at login to be his. It ha.> done so because it could afford to. and because it was
difficult to do other A i;

Access to a users persi A files is controlled by the monitor, and all sys.cm files (i.e.
Journal documents) were accessible to everyone. The only thing that hinget on the ident
claimed by the user was the authorship of items he journahzed during the session.

Since the Journal designates users by ident, rather than by directory iiame, and since
elements of the two name spaces cannot, in general, be placed in one-to-one correspondence
(several users, each with an ident. often sharing a single directory), the monitor's login
identi'y check was of little use as it Mood.

Rather than significantly perturb »he TENEX login procedure, we adopted the following
strategy:

I) F:or those users who have personal uncctorics, we constructed a system database giving
ident as a function of directory. TENEX was modified to infer the users ident from his
stated directory name (which, of course, had to be accompanied by the appropriate

Knowledge Workshop Devclopmrnf - Reported as of 7/74 page 103

 -—

SRI-ARC 30 JAN 76 5 34PM 22133

III NLS SubsysttMiis
13 Recorded Dialog

password) at login, using the database, and to store it in a read-only, job-global cell for
subsequent interrogation by NLS.

2) For those users who share a directory, we placed oppos te the directory name in the
database the idems of the users who use the directory. When TENEX encounters such a
user at login, it interrogates him for his ident, accepting only one that appears in ihe list.

Thus, those users who are assigned a personal directory, and who login only under that
directory, are completely protected by the System (i.e., they cannot be impersonated), while
those who work in a community directory are less fully protected, since they c.-.n be
impersonated by any other member of the directory community. We are encouraging user
organizations to set up separate directories for each user. ue." <

Has the Requestor been Granted Access to the Document? ' ''^

We have defined two classes of Journal items: private and public. Whenever a document is
entered into the Journal, its author can select the class most appropriate, with public being
the default. Private documents are defined to be readable only by the clerk, an author, or a
distributee. That list of idents, including in general those of both individuals and groups, is
stored as text in the first statement of the file that ultimately holds the document in
read-only storage. Whenever a user attempts to load the file, the list is consulted, and if
the requestor's ident appears in it, his request for the document is honored. "•":

Has He been Granted Access by Implication? ; 'f

Since authors and distributees may be groups of people (or other groups), as well as
individuals, the access list for a private document in general contains group, as weil as
individual, idents. A user who requests access to a private document may therefore hav^
legitimate access to it by virtue of his membership in a group, without his individual ident
appearing explicitly in the access list. Because group idents are used heavily is this way, we
were compelled to provide efficient means for verifying an ident's implicit appearance in an
access list. is«?«

To this end, the Identification System was modified to maintain back links, as well as
forward links between each group ident and the idents of its members. That is, not only is
a membership list maintained for each group ident, but in addition, now a group list is
maintained for each individual or group ident, specifying the list of groups in which the
ident is a member. '» <•

The loggedin user's group list is loaded by NLS once per session, and by a simple search of
that list, most instances of legiiimate access attempts to private documents can be identified.
For those cases in which the user's claim to a document is more complicated (e.g,
requestor A is a member of group B that is a member of group C, that appears in the
access list), the Identification System is consulted and its database examined more
thoroughly. ,'<•:><

EXPERIENCE AND PROBLEMS

The private dialog feature of the Journal has been in advertised use for only a few months, and
hence any in-depth attempt to ev^'-..te its performance or use would be premature. The areas
in which effects are most likely to be expected are those involving intimate collaboration

Me«

page 104 Knowledge Workshop Development - Rcpoileti as of ',/74

-r til

■BWZ-

SRI ARC Jü JA , 6 5 34PM 22133

IM NLS Subsystems
13 Recorded Dialog

between users It';* long been common practice, for example, for cooperating users to
impersonate one another to get at a Trie that, though neces arily residing in one particular
directory, is in reality a joint file. In implementing private dialog, we've necessarily lestricted
such practices, and the resuK will probably be the design and implementation of more formal
methods for accomplishing such shared tasks.

OUR THINKING ABOUT A GENERAL, MULTISITE SYSTEM

Motivation

Recognizing the immediate neea io provide dialog support for Utility users, and recognizing
also that the implementation of an etficient dual-host dialog support system would require
• .gnilcantly more than 'imple modification of the existing, single-host system, we elected to
make the short term modifications described earlier and then to begin design work on a
generul. multihos» system to be distributed on an arbitrary number of ARPANET host
systems.

The implementation of such c system would involve a complete rewriting of the present
Journal, Number, and Identification Systems. Furthermore, we expect that the new DSS will
in many ways be a different system, one in which many of the basic concepts of the previous
system find a place, but also oni «n w' ich new concepts appear.

Design Goals

In designing a MultiHost Journal System (MHJS). we had a number of goals in mind, the first
necessarily being modularity:

Modularity:

We envision a system composed of modules, each providing some specialized service to the
others, or to the end user, and which together comprise a coherent system.

Each module implements a set of primitives whose syntax and basic function are to be
standardized, but whose internal workings would be left unspecified by the design (within
certain broad constraints), being dependent upon ihe implementation machine, and the
particular role that the module is to play within the System as a whole.

Reconfigurability:

The MHJS must be reconfigurable. Although the design suggests in broad terms the
manner in which the System is to be constructed from its component modules, the design
does no more than specify a family of MHJSs from which a particular configuration can be
selected [in the same way that a computer system manufacturer provides a set of hardware
modules (disk drives, CPUs, etc.) from which the customer configures his particular
system].

The design specifies a small set cf ntuauie typv.*, 'ich of which is replicated in appropriate
numbers for a particular system configuration.

The MHJS must be reconfigured, for example, to «ccommodale the addition of new hosts
to the system, or it might be reconfigured to place an instance of a frequently used module
closer to a population center, or for any of u variety of other reasons

Knowledge Workshop Development ■ ReporlH as of 7/74 page 105

- .:- ,; ismg

SRI-ARC 30 JAN 76 5 34PM 22133

III NLS Subsystems
13 Recorded Dialog

Optimum Data Base Distribution:

It is, of course, more expensive to manipulate remote databases than local ones; sometimes
it is impossible (eg, when the remote host is down). The MHJS, therefore, must attempt to
reduce the frequency with which remote databases must oe dealt with by replicating
portions of »hem in centers of user population and message traffic.

Uniform and Consistently Applied Access Controls:

The MHJS must recognize the existence of private information of every type (documents,
catalogs, idents, etc.) and provide the access controls necessary to protect it, providing for
private dialog of a much more flexible nature than that described in the preceding section.

With these gcais in mind, then, we began des:gning .. MultiHost Journal System. Some of the
more important concepts we came up with are described below; the reader is referred to [5]
for a more complete discussion.

SOME iMPORTANT CONCEPTS

Isolating the Recording, Cataloging, and Distribution Functions

The original Journal implemented a single user primitive we called "Submit" which
records, catalogs, and distributes a document. We considered that primitive fundamental to
dialog support, and the vision of it color J our thinking about the Journal's internal
structure. We've since learned that the subprimitives from which Submit is constructed are
also of interest to the user.

For example, we've found it useful to be able to distribute a previously submitted document
to additional users, an operation that we've implemented and c «ll "secondary distribution"
(even the name reflects our bias toward "Submit"). We now recognize, further, the need
to be able to distribute a document without recording it at all, a facility that the present
Journal still does not offer. And we recognize the cataloging subfunction of "Submit" to
be a more generally useful tool, applicable, for example, to personal as well as system
databases.

Access Controls

We decided from the outset of the design to implement flexible access controls throughout
the MHJS, applying them not only to documents, but to data elements of ail
types-catalogs, idents, and so forth. Controlling p.ccess to a data element consists of
specifying, when the data element is created, the list of individual or group idents granted
access to it, and then limiting access to members of that list.

This is the same kind of accesr; control now implemented in the present Journal, as we've
already described, and is by far the most satisfactory type we know. In the MHJS, we've
taken the additional (?nd natural) step of assigning passwords to idents, and requiring their
use, as a means of verifying the user's identity.

Catalog Number Assignment

The present Journal assigns every recorded document a •jnujue identifier, called a catalog
number, by which the document can be referenced or retrieved. Since the MHJS is

page 106 Knowledge Workshop Devcloprnerl - Reported »s of 7/74

vi rr f—"

SRI ARC 30 JAN 7b 5 34PM 22133

III NLS Subsystems
13 Recorded Dialog

conceptually a single Journal, we must somehow maintain uniqueness in catalog number
assignment, while yet hopefully making the assignment process reasonably efficient and
reasonably insensitive o host failures. These requirements preclude the simplest
implementation, i.e.. assignment of numbers by a single module at a single host.

The approach we think most satisfactory is to station several instances of a module we've
called the Number Vendor at strategic points about the system. Each additional N jmber
Vendor, assuming it resides on a different host, increases the probability of a user's being
able to obtain a catalog number when he wants it, as well as reducing the overhead (by
placing the source closer to him).

At any time, each Number Vendor owns a subset of the universe of catalog numbers from
which it can satisfy user requests. A Number Vendor may assign only catalog numbers
that it itself has been assigned by another Number Vendor, except for one special root
Number Vendor assigned initial possession of the entire name space.

Number Vendors might be stationed throughout the MHJS, each with responsibility for
servicing a segment of the user population, and each replenishing its number supply, when
it nears bottom, from the Root Vendor. This strategy permits a form of number
assignment that is both efficient and insensitive to the host failures that periodically make
the Root Numoer Vendor inaccessible.

Publishing a Document

In our design of a MHJS, we've made central a concept that is given only lip service in the
present Journal, that of subcollections. A subcollection is a subset of all recorded
documents, each of whose members shares some common attribute, e.g., author, subject,
and so forth. A single document may be assigned to zero or more subcollections, either
explicitly by the author, or by the system. Although hard copy subcollection catalogs can
be generated, the Journal maintains no online subcollection catalogs, thus severely limiting
the utility of the concept in its present implementation.

A major concern of the MHJS is to provide specialized marketplaces in which documents
can be exchanged. Such a marketplace is called a "forum," and one speaks of
"publishing" a dcnjument in a forum. In the MHJS we've thus placed great stress on the
concept of allying a recorded document with other documents related to it (i.e.. placing it
in a subcollection). relegating the concept of simply recording a document to a less central
role.

Users with interest in a particular forum can formally declare that interest, and, subject to
appropriate access controls and accounting discipline?., become "subscribers" of it,
thereafter automatically receiving an announcement of each new document published. The
prime responsibility of the Publisher, the module that implements a forum, is therefore Ic
catalog each document as it is contributed, and send a copy of the catalog entry (giving the
document's author, title, date of publication, etc.) to each of its subscribers. We've thus
given the old concept of subcollections an active, rather than passive character, with the
system notifying interested usen as new documents are made available.

Knowledge Workshop Development - Reported as of 7/74 page 107

SRI ARC 30 JAN 7b 5 34PM 22133

III NLS Subsystems
13 Rea rded Dialog

Maintaining Networks of Documents

For reasons of efficiency and reliability, it is necessary to permit an arbitrary number of
physical copies of a document to exist simultaneously within the MHJ5. Ea^h additional
copy, assuming it is created on a different host, increases the probability of a user's being
able to retrieve the document when he wants it. A retrieval request can be satisfied most
quickly, of course, if n copy of the r.quesied document already exists on 'he user's own
host. The system might iherdore create a copy of 'he document at each major population
center, anticipating ? rash of ivtrieval requests, and then delete the copies a month later,
once the period of peak demand has passed.

Access to a document and all its ccpies is uniformly contrciled on the basis of access lists
assigned by the author A user, for example, cannoi read a document unless the author
granted him read access to it. The copying of documents, however, is a system function
designed to promote efficiency and is theiefore unhindered by accr:s controls.

Each recorded document within th- MHJS is therefore implemented as a network of copies
whose topology is a dynamic characteristic of the system and changes with such things as
the frequency with which it is referenced. The system keeps track of the various copies of
a docum-nt, and can thus direct the curious user to the nearest one.

Distributing Information About Users and Modules

A need that pervades the MHJS, even more so than in the present Journal, is that of swift
access to information about users of the system. In the present system the database is
called the Ident File and describes the users and user groups known to the system. To
implement the access controls that the MHJS seeks to maintain throughout, both human
users and system modules are assigned idents. Group idents are verv heavily used, being
extremely convenient for implementing access lists for the various databases within the
system.

For reasons of efficiency and reliability, it is hiphly desirable to maintain copies of subsets
of the Ident File at variou;, locations within the system, each under the control of a module
called a Registrar. An ident can be known to an arbitrary number of Registrars, and that
particular set of Registrars is called the ident's "domain." Information about the ident can
be obtained from any Registrar in its domain. Modifications to an ident are relayed by the
Registrar that receives the modification request to all Registrars affected.

The Registrar turns out to be the workhorse of the MHJS, and its importance cannot be
underestimated. In designing thv MHJS we discovered that:

1) Virtually every system module must deal with irxidental databases that are lists of
user/program names (e.g., access lijts), and each must provide mechanisms for retrieving
and modifying them.

2) System modules can 'je relieved of a significant burden by providing a specialized module
(the Registrar^ whose function is to provide the primitives required to manipulate these
daf .es.

page 108 Knowledge Workshop Development - Reported as of 7/74

 -^^-^

'- .' - •rr.—'^v ;- -

SRI ,\P.C 30 JAN 7b 5 34PM 22i33

III NLS Subsystems
13 Recorded Dialog

3) Furthermore, the lists then beeome accessible from any one of an arbitrarily large set of
Registrars (the group ident's domain), since the Registrar already implements the required
broadeast facility.

4) Since the existence of a document's read access list (for example) implies the existence of
the document itself, whether or n^t a doeument exists ean l)e determined by consulting the
nearest Registrar.

5) Race conditions assoeiated with the creation of a doeument (e.g., two users attempting to
create a document with the same catalog number simultaneously at two different points in
the system), for example, ean be arbitrated by the use of locking mechanisms implemented
by the Registrars.

CONCLUSION

Having made '.leavy and continuous use of the JournJ for over three years now. ARC has found
it to be a powerful dialog support tool for knowledge workers '

During the course of its use, the Journal has been substantially modiiied to increase its efficiency,
extend it* geographical reach, and provide the new features we've discovered to be important
Initially i. experimental system supporting a fairly small number of geographically concentrated
researchers, it now supports a large, geographically distributed user community linked by thf
ARPAM T Initially a software «ystem implemented on a single computer, it now operates on a
pair of ! Df'-lO systems linked by the Network, and design work has been done for a general,
multihost system. Initially exclusively a forum for public dialog, it now supports private
communicaj jr. as well. : < -

The Journal 'vill further evolve and new features will be implemented and experimented with as
we continue to gain e. ner 'nee in the dialog support field. < ='

ACKNOWLEDGMENTS

Many past and present rnenbers rtf the Augmentation Research Center have contributed to the
design, implementation, anc evolution of ARC's Dialog Support System. The contributions of the
following individuals warrant special acknowledgement: William S. Duvall. Douglas EngHbart.
David Evans, J. David Hopper, Charles Irby, and Jeanne North. »-;

REFERENCES

[I] (13bla) SRI-ARC. Online Team Enviionment / Network Information Center and
Computer Augmented Team Interaction. Augmentation Research Center. Stanford
Research Institute, Menlo Park, California 94025. 6-MAR 73. (I304L)

[2] (13c2bl) Nancy Neigus. File Transfer Protocol. BBN. Boston. Massachusetts.
12-JUL-73. (17759.)

[3] (13c3d) James F. White. NWG/RFC 524 #1 A Proposed Mail Protocol. Augmentation
Research Center, Stanford Research Institute. Menlo Park, California 94025.
3i.MAY.73. (i7140,) ■' •

Knowledge Workshop Development -- Reported as of 7/74 page IW

r T 111*111 n ii -'i i^niiin' • -"-

SRI-ARC 30 .'AN 76 5 34PM ^2133

III NLS Subsystems
13 Recorded Dialog

[4] (13e2a) James F. White. A Descripiion of the New NI.S Privacy Features. Augmentation
Research Center, Stanford Research Institute, Menlo Park, California 94025.
7-MAY-74. (22911,)

[5] (13f2b) James E. White. Description of a Multi-Host Jiamal System Augmentation
Research Center, Stanford Research Institute, Meilo Park, California 94025.
MHJSPAPER.NLS;33, (23144,)

[6] D. C. Engelbart, R. W. Wiitson, J. C. Norton, The AugmenteJ Knowledge Workshop In
AF'PS Proceedings, Vol. 42, 1973 National Computer Conference, pp 9-21, 1973.
(14724,)

page J10 Knowledge Workshop Developmeni -- Reported as of 7/74

SRI ARC 30 JAN 76 5 34PM 22 1 33

User Program System and Library
(b\ N Dean Meyer)

INTRODUCTION

As described in our previous final report [I], the L10 programming language and the User
Programs subsystem in NLS allow the user to write programs that:

-act as filters through which the user may view or edit a file,

-automatically edit a series of statements based on content analysis,

-define special-purpose sorting algorithms,

-produce special sequences of statements from a file, and which

-constitute special-purpose additions to the NLS command language.

Our emphasis in this contract period has been on delivering these extended tools to the user. Our
etTorts have been focused on two areas:

1) We have piovided a liorary of user programs, written by our staff and our users, that
satisfy common needs.

2) We have made LIO easier to learn.

Our work in this area is in keeping with our efforts to apply the Knowledge Workshop techniques
»o the needs oi groups outside of ARC, and to study the process of integrating NLS into ongoing
work situations.

The User Programs Library allows us to experiment with a wide variety of additions to the
NLS environment, to freely evolve potentially useful tools, and to examine their usefulness. It
also provides an inexpensive way to add capabilities that are not general enough or used
enough to warrant inclusion in the NLS command language.

As users learn to program, NLS should adapt itself very closely to the unique needs of each
group. ARC, in turn, w •■ given a tangible medium for understanding the special problems
of our application groups.

USER PROGRA:" LIBRARY

User Programs

At the time of wriMng. there are 37 programs in the User Programs Library. They include:

content analyzer filter programs (e.g. ^ne that displays only those statements with Output
Processor directives in them),

coment analyzer editing program (e.g., one that deletes spaces at the beginning of each
statement)

sort algorithm program (eg., one that ignores statement names), i

Knowledge Worksnop Devclopmenl - Reported as of 7/74 F-g; Ml

-^ -- ii-Miii r '

SRI ARC 30 JAN 76 5 :4PM 22133

III NLS Subsystems
'4 User Froizrams

executable program, which to the user looks like a special purpose command (e.g., one thai
executes a substitute command on a set of files).

Many were written to fulfill specific needs. Some can be grouped into process aids.

For example, mes age handling mi^ht be f-Hlitated by usirg the executable program ihi»'
copies one's MESSAGE.TXT file into NI S, *he content analyzer program that edits journal
and message citations to a form desip ied for one line views (so that the two types of mail
can be integrated), and then the sort algorithm that orders the branches by date.

These few aids make it easy to handle one's mail entirely in NLS, exploiting all the powers
of NLS for viewing, classifying, deleting, redistributing, and working with the messages.

The documentation production proccs is apother example. The Library includes programs
that produce a bibliography of the journal references in the file, produce a Table of
Contents at the f'ont of the file, insert directives throughout the file to format according to
any of a numbei of predesigned styles, create a title page, show only those statements with
Output Processor directives in them (to ease format adjustments), and (having processed the
file for output) delete all directives (leaving the file clean for online viewing,.

All programs included in the Us^r Programs Library meet ..'tain standards. They must
include adequate error checking, they must be well commented and documented, their source
code uses NLS file structure to make their flow clear, they only use unconditionH program
control transfers where required, and the executable programs must follow the command
syntax conventions throughout NLS. Programs that were oflfered but did no* meet these
conditions were made to do so.

The programs in the User Progiam Library are a rich source of examples for ihc novice
programmer. They range from simple to very sophisticated programs and cover a wide
range of activities

Access from NLS

The command that leads a program into the user's programs buffer space has been modified to
check the directory user-progs > [where all the programs in the Li riry (both source and
object code) are stored] if it does not find the program in the connected directory. The user
need oniy know th< .u.ne of the program.

The command also looks at ihe extension of ihe object code file, which simplifies use of
p/ograms in the Library

The extension "REL" simply makes the command load the program. These are executable
programs.

"CA" makes the command load the program and institute it as the current Content
Analyzer filter program.

"SK" makes the command load the program and institute it as the current Sort Key
extractor program.

"SG" makes the command load the program and institute it as the current user Sequence
Generator program

page 112 Knowledge Workshop Dcvdopmcnl ■• Reported as of 7/74

^^ -^-r r *,--*

SKI ARC 30 JAN 76 b 34PM 22133

III NLS Subsystems
14 User Programs

Documentation

Every program in the Library has in its source code a branch that explains how to use that
program, what it does, how much buffer space it requires, and who wrote it.

All but the author's ident is also stored under each entry in a Table of Contents to the
available User Progiams (user-progs,-contents,l:w). This Table of Contents is formatted so
that a ne-line one-!evel view will give a quick listing of all available programs
(user-progr,,-contents,l:x); this list is included below.

In combinat. >n with the very basic User Programs Users' Guide (user-progs,-userguide,l:w),
the non programmer should find it easy to use the programs in the User Programs Library.

USER L10 PROGRAMMING

Documentation

To facilitate the learning of L10, a new L10 Users' Guide has been written [2]. This is the
first L10 guide to be tutorial (as opposed to simply a reference guide). It begins with simple
Content Analyzer filter patterns, and develops the user through L!0 Content Analyzer filler
programs, editing programs, and finally executable programs. It provides examples, and does
not assume much h he way of programming expertise. As well as an explanation of the
many features of L10, ! includes tricks of the trade and system information so necessary to
programming in the complex NLS context.

Although this document is large (100 pages), it is arranged so that the user can work to
whatever stage of skill he wishes. The document has been modified as we got feedback
from those who have used it. It is expected that the LIO Users' Guide will continue to
grow in both content and care of presentation: it should continue to take on aspects of a
programmers' handbook.

A listing of all procedures in the NLS system is another aid to L10 programming that is
available. For each procedure, this document provides a list of the formal parameters, a brief
explanation of the procedure, and a link to the source code. Since so much of L10
programming denends on knowing what system procedures are availatle. this file has proven
extremely important to both novice and expert programmers.

In addition to helping the programmer find a procedure that satisfies his need, it allows the
novice to find examples of L10 in the system code itself. If the programmer finds a
command that at some point must do what he wishes to do, he can follow system code
through and see how the problem is solved there. This is a good way to learn both L10
and programming style. The list of procedures helps one follow the code and find the
source listing of each procedure the system calls

Interface to Core Procedures

To further ease the work of the novice programmer we have i^un writing a set of proceacres
which match the NLS commands. Each command will have a corresponding procedure which
requires the same parameters in the same order as the command. These procedures will

Knowledge Workshop Development - Reported as of 7/74 page 113

^-"""

SRI ARC 30 JAN 76 i 34.W 22'33

III NLS Subsystems
14 User Programs

include very careful error diagnostic messages. This should allow the novice to call in his
progran any NLS command he knows.

LIST OF USER PROGRAMS

Program Function

Addname Adds name to nameless stmts from first word in stmt

Address Asks for idem, inserts the address at the bug

Addtexf Adds text to front/back of statement in plx/brnch/

Append

Appendlist

Changed

Delcol

Deldir

Dclname

Delsp

Format

Index

Inmes

Inseqh

Inrun

Jform 1

J form 2

Jform 3

Letter

Lowercase

Makeref

Notabs

Printcml

Sendmes

Showdir

S^rtmes

grp/st

Sequentially appends stmts in group, text between

Like Append, but leaves substructure

Marks statements changed since a given date

Deletes buggea col, assumes next col line:4 up

Deletes Output Processor directives

Deletes statement nsmes

Deletes leading spaces from statements

Adds print directives to a file

Creates a word index for st/br/plex/group

Inputs all of message.txt file into NLS file

Does a sophisticated Input Sequential file

Inserts TENEX Runoff file into NLS file

Reformats Journal references

Reformats Journal references

Reformats Journal references

Puls file in letter forn, adds dear & sincerely

Recovers from an er leous XSET UPPER CASE

Scans for Journal links and makes ref branch

Replace tab keys by spaces in plex

Runs and prints CML programs/grammars.

Sends messages from NLS

Shows only stmts with Output Processor directives

Sorts key extractor: by date at beg of statement

Type

C

E

E

E

E

C

F

C

C

c
E

E

E

E

E

C

c
c
E

C

E

E

E

C

SK

page 114 Knowledge Workshop Devclopmcnl - Reported .is of 7/74

;.-nr.
1 - ir —

■■MenMHM

SRI ARC JO JAN 76 b 34PM 22133

III NIS Subsystems
14 User Programs

Sortnmskp

Sortnocast

Sorlnum

Sort rev

Sriform

Sublist

Tblpts

Toe

Trace

Truneate

Wordeount

REFERENCES

Sorts key extractor: as usual but ignores statement
names

Sorts key extractor: alphabetic, disregards case

Sorts key extractor: sorts by first number in stmt

Sort key extractor: exactly the reverse of usual

Puts in OP dirs and spaces to SRI standard format

Does substitutions on stmt of files given column

Adds periods to end of simt out to given column

Generates Table of Conten's with stmt num refs

NLS call return tracing system for microanalysis

Truncate> st/br/plx/grp to one line-assume 3/lev
ind

Counts visijles in st/branch/group/plex

SJC

SK

SK

SK

C

E

C

E

E

E

[1J (14al) SRI-ARC. Online Team Environment / Network Informatk/ii Center and Computer
Augmented Team Interaction. Augmentation Research Center. Stanford Research
Institute, Menlo Park, California 94025. 6-MAR-73. (13041,) ^.

[2] (14cla) SRI-ARC. L10 Users' Guide. Augmentation Research Center, Stanford Research
Institute. Menlo Park, California 94025. ll-SEP-73. (18969.)

Knowledge Workshop Development •■ Reported as of 7/74 page 115

SRI ARC 30 JAN 76 5 34PM 22133

Query/Help Software and Data Bases
(by Harvey G Lehtman, Kirk Keiley, Dirk H van Nouhuys,

and Jeanne M Beck)

QUERY I -- ON-LINE PORTRAYAL OF THE NIC RESOURCE NOTEBOOK FOR
THE ICCC: CAPABILITIES AND LIMITATIONS

In October 1972. ARPA participated in the first International Computer Communications
Conference held in Washington^ 1] DC. Many sites on the ARPANET gave demonstrations of
their systems showing online distributed computing techniques to those attending. As part of its
function as the Network Information Center. ARC provided on and offline information about the
identity and resources of nodes on the net. The database containing this information was housed
in several NLS files and was known as the Resource Notebook; these files were created and
maintained in NLS with hard copy summaries and editions prrxluced with the Output Processor.
While they could also be studied online using NLS, a simple special purpose user interface was
produced for users unfamiliai with the NLS system. This interface was known as Query.

Query I. which operated only in typewriter mode, had two principal commands: "Bring," which
loaded the database for a particular site, and "Show," which permitted the display of particular
information about a site. (Other commands listed the sites for which descriptions were available.)

If a node was to be shown (e.g., by giving the command "Show Personnel") all information at
the node (in the NLS statement named) would be printed out. In addition, »he first line of
information one level under the node being shown was printed. These fir^i lines of the lower
level statements constitute a menu of immediately selectable nodes The names in the lower
menu could then be used as the operands in further Show commands.

An example of a typical Query menu for a host file from the Resource Notebook follows:

-bring rand-rcc

(RAND-RCC) THE RAND CORPORATION
Rani Tomputation Center

Choose one by typing: s[how] personnel <CR>
(FUNCTION)
(ADDRESS)
(PERSONNEL)
(RESOURCES)
(SYSTEM-USE)
(INTERESTS)
(DOCUMENTATION)

Preceding page Hank
Knot'ledge Workshop Development - Reported as of 7/74 page 117

7,,^^ : 1

SKI ARC 30 JAN 76 5 34PM 221 JJ

III NLS Subsystems
15 Query/HELP

Two limitations in Query I are apparent:

1) The system operated in typewriter modj only. We wished to incorporate some of the
display technique» available in DNLS (e.g.. a cursor pointing device to make selections).

2) The database builders wert limited to a strict structure: (he power of NLS links to connect
nodes (to avoid duplication of information) was not available.

Considerations such as these, combined with the desire to provide online documentation for
NL5-K. led to the design for Query I I/Help described below.

QUERY II DESIGN

Design meetings, implementation of partial test versions of the system, evaluation, and redesign
took place on a rew version of Query. (The existing Query I was cleaned up and an LIO
program written to aid in the maintenance and verification of the Resource Notebook.)

The design for Query II resulted from a need for ihe incorporation of genera! reference-da*a
management and retrieval tools in NLS. As such, the design attempted to satisfy several, perhaps
conflicting, needs.

A general system requiied a fairly complex user interface to permit general full-text searching
of data. Eventually, inversions world be desirable. Searches by name rr NLS are reasonably
fast, but content searches over large uninverted multi-file NLS databases can be slow. The use
of the Data Computer for storage and retrievil of information was also consid»ved [213].
A full Boolean exprevion retrieval language was designed. Commands for the creation of new
•cts of information and output to fles or printers were desirable.

A general Forms system [4] was also being designed, and it was desirable to incorporate its
data management and retrieval requirements into the Query li design

W; hoped the system (or at least a simple subset) would be capable of providing online
dorumtMation of the user's current state and of the rest of NLS. Informati< n about the user's
state from the CML interpreter could be used to provide entry keys ,nto a s.'ructured database
describing the system.

The part of the new Query system with highest priority was the Help system. Because of
resource limitations, the designs for a general Forms system and reference-data mamgeinei I
systems were completed, but not imple.-vnted. Ihe core code of the current Help sysicn could
be used, with modifications, to permit access of more than one fi!e (with an attendant
complication of search alogrithms). Other straight forward additions would be implementa.« n of
a more co.nplete user interface permitting bugging of selections in DNLS and tl.c use of Boolean
search expressions over general databases.

A Help System, however, had to be oriented toward the needs of novice users. The command
set had to be minimal. Some in the group felt that even the use of the command word
"Show" as in Query I was excessively confusing. TK Help mode had to be a single
command. Its wider powers need be apparent only to sophisticated users. The Help System
user was to be led through the database by its structure and presentation of menued nodes that
cou'd be selected by number.

page 118 Knowledge Workshop Development - Reported as of 7/74

 ii r ~ rr

■

SKI ARC SO JAN 76 5 34PM . JIM

III NLS Subsystems
15 0uer>7HELP

THE HELP SYSTEM AND OTHER CMI-NLS-8 HELP FACILITIES

lie Help System, an intended suDsct of the general Ouery-ll *vas to be but a part of an array of
online user assistance tools: typing a question mark at any point in the command syntax giNes
the user of NLS a list of command alternatives at that point; typing a Controls at any point yives
the complete syntax of the command (with all of its remaining variations). These facilities are
implemented by code fhat threads through the command state information maintained by the
CML interpreter and the CML NLS grammar tree (see sections 8,^). If the user types a
Control-Q, semantic information related to the user's e?; «'t statu:; in the command specification is
obtained from the Help database and displayed.

The CML interpreter maintains a command stack which contains, amc'ig other information,
pointeis to cummand words specified in the CUTCHI command. This stack is followed and
these command words extracted into a list whicii serves as the first parameter keys ^to the
Help database.

All info-...i-!ion at this prticipa! node* is p^iirayed, aloig with linked information: a
discussion of »he structure of the Help databa«« is '^und below In addition, information
oflerings are menued -subsidiary information offcrin *ts art listed with menu numbers. The
user may follow any learning path desired, by menu number or node name selection. He may
return to information thu had been seen before. Return to NLS is accomplished by typing a
Command Delete. Entry to the database may also be accomplished by issuing the Help
command directly from any NLS subsystem with an optional node path specification. The
paths in the database may be followed in the manner described above.

Note »i at portrayal of the database in the Help command is controlled by the Help System and
the database builders. In the :est of NLS, portrayal is controlled by the user with Viewspecs. In
Help, embedded Viewspecs are inserted by the database builders. (The file in the database is an
NLS file and may be studied using the normal NLS facilities.)

Examples of :hese help ools are illustrated below in Figures I through 7.

Knowledge Workshop Developmenl - Reported as of 7/74 page \\<*

i. f^i—igir. i - r.^^-i".-, i ; _^"l -riT-

Ill NLS Subsystems
15 Query/HELP

SKi AR(}0 JAN 76 rj 34PM 22133

»■■:■ y

~\
■P ■-'•■:': ,* Pr-^.|>»p .- ^* ■; - -^r,.J4r..

7:'.&#s K-^.F'"!^ i.!-^ ta^c r.:/'-ft* r-c -:f f'^e Ov4 rv4' .
f,«; ■ '''■i'r' '•,-"4-r .. rw?:..r* »r ' 4 ' e 6 > e4 ■*"•■. ^^«'J ff«""; ' ^ >' 4'

'■« "i j4 ZJ* P^: re;?:*- »»-.pq ^-r ^rr,:'-4 ir--. r'j. . •. * ^ r V4 ■ i-^. ü-"

-» fi'' f.t ■ c-r * - CCw ■• C ;":^j4 p-' u-j4 :

"'is f^ •" j"-4-pV^T lir'-p n''

Y ■' ■ ■''- J • ^ • r ■■•--
-3ei i^c i 4'*5rffe-er'4',9^©» o4. efpcj'4 i,sn 4 igti ^ ■

' ''•' •-.' ^* . v ■. . #

it-er. a jt^ Q.vee N^i tn Output *><-ccet«ö^ cc^ftrj., kii
cad« t-tf p'-cg^af-' ^Tfa^d-cs'' a tKf/OJltM P^CC

Figure 1. A user issuing the NLS Copy" command. (Prompting lor the ne .t command word

is done below the command feedback Ime-i e.. b> »he "(" on the line beneath the woro
"Copy")

^ . h tut»

Cisf^e^t f ZGf*ff\\ A!1p^^a4-JPe arp

Brunch . L ,^

CH|ir»d pr fij-rte^

I .ffd Cy •■ • Pip«, " "'

v . e ^ ! | ,.

Figure 2. Typing a question mark leads to the displa> <>! the next level ol" command choices.

page 120 Kntmledge Woilcshop IX-\clr,>mcni - Rcporied as of 7/74

ii -n rail r-r^T T~rMi" ii'if

mmni*« " «

SRI ARC 30 JAN 76 5 3-°" 22133

11! NLS Subsystems
15 Query/HFI P

Figure 3. After selecting the Copy Word" comtiiand. the user is prompted for an entity
selection, as indicated ■>> the Ii/A/[T1". A question mark produces the explanation shown.

k^'B,'>ojp cr CrDjr ccttnaMe r«•p'vduc«,•«, » STR'^G at weih«*"

r- #"^ie lV ,
4 'j«f.h.i .o^e 'of sr^ivos-' ■"

Figure 4 More dc.'.iilcd information is obtained through the "Help" command entered by
typing Control-Q. A simple explanation is folhmed HN .-, mtnu ol n»>dcs whi.h mav be selected.

Knowledge Woikshop Develc»pmtfni Ki[x.rir.! .is .•! 7 '4 page 12i

MMB * ^"^ ^ —- ^.-^ ^^^ .^— - T-=- ■

Ill NLS Subsystems
15 Qucry/HELP

sivi AR(JO IAN 76 5 34PM 221 ?J

• The Ojtpv^ .Prccessr'- and C :^vß e^ ^ ^ ^Ali o ^

p'-.n^d ccpy"^ m.-c'-M;'% '■.--'V^ !* f56 ^ ,V^PM.:rV ;CW the

Sutpv^N^CCi r ' ft :v4 :'<
^', ' C DM dp*/*' ct

r •" a , r| we fiu^gpc^ ^r '. P
{* .T ' ,' J-' P t (

; lc|*d«d;-r^o 8 t ^ane. ftpl/arei a* e<ecjl ^c^ "1 .«rsa* ^
" , ' , ' ' ♦ *" ■•>

J^«r «\JB«^ g.^ee MS a- Owt Pul P^ccceec' cc-vna-^. ' sL s
■ loadi KS% p^^-e^- ." ar^d ca «.ih« SuVoul 1

Figure 5. The Help command may also be evoked directly outside of the context of other
ongoing NI S commands Here, information is ..night on CONNF.CT" on entry to the
command

figure 6 A menu is provided

page 122 Kntmledge Wo-Uhop IX-vcloprmni •■ Rcporicd «s of 7/74

JBrY'^i' I"I rir t' rMiffirinrffiai'ir'w i-rl 'rii rn ^r i' ■ - -^ ■-- , . . 1 m ■^■iiiiiBiii

SRI ARC 31 JAN 7e 5 34PM 22133

III NLS Subsystems
15 Query/HELP

Conpejrl ^ n y i rSumbe^1 c;o»< rt
9? •DulM r?^;"^^^

' Qf*' Inöut (B^d oui r»u1 t

fC' -lype-

J p^ i »•ir'af" **"

»0 J 1

r1 . As

iVtS Jöf-t

Figure 7. ?alh^ may be followed,
subsystem.

A command delete (CD) returns the user to the current

HELP DATA BASE STRUCTURE AND CRRATION

Overall Stiucturc

Currently the Help database occupies the equivalent of about 200 pages (50.000 words) and is
written in a modular hierarchy where each module is an NLS statement called a "node" and
contains either around eight lines of text or an indirect address called a link." which points
to a node containing text

The database is divided into three major sections
1) NLS concepts
2) Syntax of commands
3) Lexicon: glossary, thesaurus, index.

The concepts are arranged logically The commands are arranged in a branching structure
reflecting the tree structure of the commands -- e.g., the node that defines "output' has as
substatements nodes defining the various second words possible in the Output command
(Printer. Quickprmt. File. etc.;. The lexicon serves to route searches from approximately
correct words to the proper node - e.g.. a lexicon entry for "links" routes tue >earch to
"link," or the lexicon item for show" offers the uvr a choice among the several types of
showing in NLS

The NLS Concepts

The NLS concepts are arranged in a combination hierarchy-network. This is to allow the
user several ways of getting Help with NLS. Some of the pos.iSle ways are:

Knowledge Workshop Devdopmcnl ■• Reported as of IH page 123

»in r » ^^ Trrr ^ ir ■ =TT^fT"

SRI ARC 30 JAN 76 5 34PM 22133

III NLS Subsystems
15 Query/HELP

') Reading sequentially from the beginning as a tutorial

2) Entering at any point and finding the answer to a specific question

3) Browsing ;hrough the database; a combination of the above.

As the command language first functioned, there was no indication to the user that the
database was hierarchical. We discovered that this approach made many users feel
unanchored. It was particularly disconcerting to start down a path and suddenly find
on self looping back to a "higher" point already visited. Beginnings, major subdivisions,
and table,, of contents were all missed.

Later we made available to the user a command to show the next higher node Only fairly
sophisticated users employ this command. Such users can picture themselves in a hierarchy
and yet easily jump off to learn about an unfamiliar concept that may be in a completely
different structural and conceptual branch.

The Syntax of Commands

This section of tne database is divided according to NLS subsystems into sections that
contain lists of the available commands in alphabetical order. The Editor is the largest
subsystem and contains so many commands besides text editing command* that we decided
to further divide it into one more level of categories. Each command is described in a
concise but not cryptic notation specially developed for the Help subsystem. For example,
command words appear with initial capital letters while special variables that can mean
more than one thing are in all caps. DESTINATION tells the user to point to something;
CONTENT means you can point to something that already exists or type something new;
OK tells the user to hit a confirmation key. Examples:

Delete Character (at) DESTINATION OK

Replace Word (at) DESTINATION (by) CONVENT OK

The Lexicon

The Lexicon is a linear list of words .n alpoabetical order with or line pointers to synonyms,
alternate spellings, duplicate locations of the same uo'-d. and definitions of special terms.
Currently this list is searched before the rest of the d, tabase. (n this way we can trap a
term that is used to mean different things in different 7 rts of ihe hierarchy. V." • try to
avoid using ambiguous terms wherever possible, but M is unavoidable in many cases. Hr
example, asking for the word "numb':." by itself gets you several choices:

1) Journal number
2) STRING number
3) Statement number
4) SID: Statement IDcnlif. r.

One of these four is picked to specify more preiisdy the kind of number the liser wants to
know about

page 1 24 Knowledge Workshop Devclopftv l -- Reported as of 7/74

- a^r^-.-^

■Pill — I ..

SRI ARC 30 JAN 7b 5 34PM 22133

III NLS Subsystems
15 Query/HELP

Format for Nodes

The optimum formal for a single node give.i the current accessing syskrr differs very much
from conventional hard opy formats. The first line of a node is written to appear
appropriately as a singie line in a menu. The body of a node contains a short description of
its subject. At the end of most nodes is a list of suggested reference terms. The total length
of a node is limited to from six to eight lines so as not to burden the user with too much
printing at one time. After a node has printed, fhe first lines of each node in the next level of
that node's substructure are automatically menued as choices in a numbered list.

For example, the node and associated menu for the term "NLS", as they would be displayed
to a user, are:

NLS: Online System
NLS is ARC s central tool in the Augmented Knowledge
Workshop. It has a Command Language divided into
subsystems for specific tasks in Information Space. When
you enter NLS, you begin in the Editor, which contains many
capabilities including information modification commands.
You are now in the NLS Kelp subsystem. Show also: ARC,
subsystems. -^ ^
1. Systems: entering and leaving •• =

Viewing information: ■-
Information space: ^:. <
Modifying and creating information: ■J:-;
Command language: =
Editor subsystem: .J .
Help subsystem: tsurr
Sendirail subsystem: .^ *
Useroptions subsystem: ,'^

10.Other subsystems: Calculator, Identification, Programs
and TENEX. ^

Maintenance ^

Labeling: Statement Names ^i<j

A form of NLS address called statement names is important to the maintainance of Help.
Names are strings at the beginning of statements set off ty certain characters. The
database builder can choose what characters serve to set off names. Different name
delimiters are used for different effects. Names ending in colon are used for concepi'ja'
definitions. Names ending in carriage return are used for command syntax to allow only
the name to be seen or to allow nothing but the body to be seen when desired. .^a.

Various name maintaining programs were written. These can oe used to have the system
show only unnamed or show only named nodes. One program automatically goes through
a file and makes sure every s(atement containing a colon in the first line also has its first
word designated to be a name .'3^

Knowledge Workshop Development - Reported as of 7/74 f.age 12^

SRI ARC M) JAN ?' 5 J^WI 22133

HI NLS Subsystems
15 Query/HELP

Attempts were made wherever possible to allow meaningful multiple word term queries by
placing named statements in appropriate hierarchical positions. For instance, "syntax
delete file," "editor commands," and "statement name" are all valid queries. :5d3aJ

Indirect Addressing: Links ■L:it':

Wherever information is desired in more than one place, it is written once and then a
pointer to it is placed in all of the other locations where direct access to that information is
desired. These pointers are addresses delimited by special characters. The search path
resulting fron a link is identical to that followed by the Help System when a similar series
of node names is specified directly by a user. They are written to search in the same order
and to use the same words as the accessing system does when searching for words asked for
by the user. A program was written that automatically locates and follows every link of
the proper forma! and makes a list of those that don't work. '■-x--

To prevent visibility of the links to the user, they are entered in the database in a special
format and are stripped away before portrayal. For example: ■' = 'f

SendmaiI Commands
##< s e ndma i I !comma nd s >##

Documentation Algorithm ' -

A Help manual is maintained and updated online. It contains conventions luted above as
well as other conventions and the step-by-step process necessary for writing, updating, and
developing the Help database as the primary up-to-date source of documentation for NLS
and the Knowledge Workshop. ; -^

DEVELOPMENT HISTORY: SUCCESSES AND MISSTEPS 'p

Introduction ;^

The Help System began modestly with the notion that NLS should be able to answer more
complex questions than systems that yield omy lists of possible commands or brief scenarios.
The ambitious system that evolved has a complicated data structure in terms of NLS, attempts
to give a reasonable exphmotion of »he user's situation at any point, or of any term a user
might reasonably expect to be relevant, and replaces the heavy System Reference Guides
common in the industn. It has acquired this complexity through evolution rather than
planned growth. Othtr developers are building systems like this and more will come It seems
worthwhile to record here for future works, some of our difficulties in making design decisions
and some of the unforeseen consequences of those decisions. icn

Level Versus Hierarchical Structure r

We began with a resolution to offer prose definitions of NLS terms and under each definition
offer a menu oi related subjects. The user might then choose a menu item and see that

page 126 Knowledge Workshop Development - Reported as of 7/74

-.,^.-,..:■ -ff^ -mi
T^^"^-^-^—-^ ~'"

SRI AK(30 JAN 76 5 34PM ^2\33

III Nl.S Subsystems
15 Query/HELP

definition with its associated menu. The menu items would be a form of Nl.S link [5]. The
question was. how should the statement« be named in the link?

NLS statements may be addressed by names. Names are a string of characters set off b\
delimiters. The names are stored in a hash table and searches for statements by name are fast.
NLS statements may also be identified by numbers attached to each statement sequentially at
creation.

NLS files in normal use are organized hierarchically, in the form of an outline. The simplest
form of Help file would name each statement with the subject of inquiry one nam. 10 one
statement. This plan was seriously considered; it would have greatly simplified development
but made a less powerful system. It was -ejected mainly because of the problem of duplicate
names. How could v disnnguish between two statements with the same name.' If the Help
file had not had structure, we would only have been able to write one definition of "delete'
that would have had io apply equally to "Delete Branch." a file shaping command, and to
"Delete Edge," which alters the arrangement of the display screen. Because of restrictions in
the NLS definition of a statement name, an alternate solution would have made use of
hyphenated names to distinguish between, for instance, "delete-edge'" and 'deLte-file. but it
soon became apparent that we would end up with a large number of strangely constructed
names.

In the end we chose to arrange the file hierarchically; with a hierarchical file we could
distinguish between two statements with the same name by their posi i.>.i in the structure. It
vas then possible to specify statements in links by a path arrangement; that is, the search for
the link delete! edge . continues until a statement named "delete" is found and then search
begins in the branch headed by "delete" for a statement m u^u "edge." < -

One result has been a very highly branched file that has. at least twice, been thoroughly
reorganized [öj[7|[8J[9] with considerable expenditure of person-hours.

Our decision to differentiate among names by using a complex hierarchy was undoubtedly
influenced [1 Ij by our study of the ZOG system [10].

Other arrangements are possible; for example, the database could have beer, distributed over
several files. We rejected that alternative mainly because of software complications and time
consumed in opening files in response to a user's questions.

The Relation Between On- and Offline Documentation

The development of the Help System occurred at the same time as did a generation of
widespread changes in the command language and allied feature , spoken of as the transition
from NLS-7 to NLS-S A thick userguide [12] existed for NLS-7, which cost in the order >f
a person year to create Since the NLS system is so easily revised, we had more than our
share of the problems of maintain, g a hardcopy manual, as many people who used NLS
through the ARPANET were geographically scattered It was clear that an elTort of the same
scope was necessary to make new documentation for NIS-H that woi-M s -ve as much more

Knowledge Workshop Dcvclopmcni - Reported a» of 7/74 Pag1' 121

.11-—-- -,,,,-.

"• m ■«■ fci

SRI AW(JO JAN 76 5 34PM 22133

III NLS Subsystems
15 Quory/HELP

than an occasional reference guide. We had origirully planned to write an NLS-8 Userguide
and draw from it the content of the Help database. It proved more reasonable to write the
Help database and derive documentation from it. « ,j

Initially we expected to prepare a hardcopy reference guide which would document NLS-8
completely. Tht online Help database was to offer a simple, incomplete overview of the
system. As the Help file structure became more complex, it became apparent that it could
contain a complete accounting of NLS. It also became apparent that completing the database
would consume the available resources ■ ':

More important, checking the database has proved so time consuming, both because it covers
so much and because of the difficulty of working out Us complex structure, that the reference
guide has never been written - the reference place for NLS information is the Help database,
not a hardcopy document. ' '

It is not at all clear whether this was a desirable outcome. Ma:'y users are uncomfortable
because they lack "something I can read and get an idea of the system." Printing various
primers, introductions, and special purpose guides has only ameliorated this nervousness. An
interested user cannot always log in, and ; not be accustomed to learning from reading
computer output. Exposition via a medium like Help is not nearly so evolved as book
exposition. From its introduction to users at ARC, there has been much feedback, through
the Journal, concerning both initial implementation bugs and general reactions to the system
itself; opinions were initially mixed with strong feelings pro and con. [I3](I4][15][16]
[17118] -

The role of the Help database as basic reference source juxtaposed with ease of revision here
led to strains between a newspaper sort of function and an archived function. For example,
any user nay write a user program in CMl. or LIO that may be valuable to other users. It
also may not work perfectly, especially when applied in new contexts or when systems
programmers alter some fundamental procedure. ARC h^s undertaken to certify certain user
pjograms as bug-free and to maintain them against deterioration caused by system changes
These programs plainly should be documented in Help. But. because of limited resources
many very useful programs are not supported. Should they be described in Help? The present
compromise is that Help users are referred to other online sources for documentation on
unsupported programs with a warning that ARC does not guarantee that the programs will
work. ■■<■•,

If we write the usual sort of user guide, these programs probably would not be documented at
all. and if they were, the document would easily become out of date.

The Hein Command Language

Many controversies in the development of Help arose from conflicts between the special needs
of a Help command language and the traditional style of NLS commands. NLS commands
characteristically begin with a verb that names the action of the command followed by a noun
that names the object of the verb, then ^nc or more arguments concluded by a character that

page 128 Knowledge Workshop Developmenl -- Reported as of 7/74

^=nr;,' -

SKI AW' 30 JAN 7«J b34FJM22i33

lil NLS Subsystems
15 Qucry/HELH

begins implementation of the command. See --5d, above)). A variety of recognition modes are
available and it i, possible to limit echoing of command words and printing of noise words. A
substantial majority of users, particularly among the system developers using DNLS, invoke
commands by typing a single letter, or 2 or 3 letters in the case of little-used commands.

Then they expect to see the full command word, one or more explanatory noise words, and
then a prompt for the next step.

A general opinion at ARC holds that command phrases that express the English meaning of
the command and include full echoing follr ving little typing are g >d human engineering. But
important exceptions exist. Viewspecs . e entered by unmnei/ionic single characters and
certain single characters (<CTRL-E> and <CTRLB>) replace a complete command and
cause repetition of the previous command respectively. It is possible to implement the
command <CTRL-B> by pressing two mouse buttons up and down with the riizht hand,a
gesture unrelated to any English characters.

Wn reasons having to do with user views of the command language. NLS was divided into
subsystems, each with an independent list of commands. A separate command moves users
from one subsystem to another.

We first made the Help base accessible to the user in two ways. The simpler is <CTRL-Q -
which initiates a search in Help for the node that explains the command words the user has
just specified. The more complex method was to call a subsystem named Help that included
mainly the command "show" borrowed from the NIC query system (see 15a2). cor most
users that meant typing V, seeing the word "sh,>w" echo, then typing in a term of interest
or a menu number, and then a < CA > .

Although there have been some suggestions that another character or multi-character sequence
(e.g. "??") replace <'CTRL-Q>, that part of the Help command language has always been
satisfactory. On the other hand we soon realized that the subsystem entry and "Show"
command were awkward to learn and needlessly complex. A discussion followed in which the
participants agreed hat the command to search for a term or menu item should be

1) easy to learn,

2) easy to use.

3) in conformance with the general style of NLS.

But opinions on the order o*" those priorities and the way to carry then, out varied.

This issue was closely bound to the issue of whether a v;ew of Help limited to a node and a
menu was sufficient Designers concluded ([lC)][20][21]) that a one-line outline view and a
view including the full tex of the node should also be available. This discussion affected the
evolution of the command language but limitation of resources prevented actually coding the
two other views.

Knowledge Workshop Deveiopmcnl - Reported as of 7/74 page 12^

SHI ARC 30 JAN 7b 5 34PM 22133

III NLS Subsystems
15 Query/HELP

In terms of the reference of the nodes in Help to one another, the database is a network, not a
tree. An issue bound closely to the previous two was whether the user should be allowed to
see the tree structure if he wants or be forced to see it. The influence of the Zog system
[10], which the Software designers studied closely, pressed us to give the user commands that
use the database's tree structure. Some users accustomed to information hierarchies became
nervous when an item they had seen previously as a node appeared as a menu item later, down
the tree as they see it; others found this outcome harmonious with browsing. ' ^

Bugging in DNLS is another related issue. Most discussants agreed that it should be possible
to begin a search of Help by bugging a word in a node displayed. Not to do so would be a
clear departure from NLS style. It was not so clear whether bugging a word in a menu item
should provoke a search for that word or display the full text of the menu item. Again, the
current command allows a place in its syntax for bugging but the operation has not actually
been coded because of lack of resources. : '-<'

Proposed command styles ranged from a "show item" command followed by a field to enter
viewspecs (to specify menu vs outline vs full view) very much like the TNLS print statement
command, to a command that could be executed entirely by pressing mouse buttons [23].
Those who suggested command modes relatively austere in feedback and with non-mnemonic
command elements were no doubt influenced by the acquaintance of ARC with TECO [22],
which has one-letter commands and the Whole Universe Catalog accessing system [11] which
uses only mouse buttons. ■'-

A compromise was adopted as described in [24]. It resembles the "repeal mode" and
"insert mode" of NLS discussed above and in (8d,) rather than the usual NLS pattern of a
series of discrete, isolated commands. We see no evidence that this difference slows down
people learning NLS with the help of Help. The comr.iand has proven reasonably simple to
learn and use. It allows a user to search in term> of tree structure but does not depend on it.

Help as an Instructional Tool *r-

As the system design evolved, we had increasing hopes for the use of Help as the primary
teaching tool for naive NLS users. Those hopes have not be*n fulfilled. In practice, iruly
naive users are generally unable to learn from Help because of the technical vocabulary and
because of the general awkwardness and discomfort with using a computer via even a relatively
simple command language. -^

Help, however, has proven itself as an effective training tool for less naive users and has been
used efiectively by Office-1 Utility customers. ■''•■■

In the future, we hope to provide simpler answers to users identified as naive through their
User Profile. For the present, we have tailored initial offline training and documentation to
bring these users to the point at which they can successfully employ Help to explore and learn
about other parts of NLS on their own.

page 130 Knowledge Workshop Developmcnl - Reported as of 7/74

SRI ARC JO JAN 7b b 34r'M 221 33

III NLS Subsystems
15 Query/HELP

ADDITIONS AND MODIFICATIONS

The following addiPons to the Help System are anticipated in the existing designs: '■'■■"■

1) Permit "bugging" of data in DNLS. This requires the creation of an additional data
structure that contains the fnrmnüed information displayed to the user. The mechanism in
NI.S that permits interpretation of bug selection points into this structure. '•"■*

2) Expansion to multifile databases and, in particular, the Resource Notebook and other tools
in the NSW

^) Implementation of the full Query h .^M» e. '■"'■■

4) Implementation of commands to gather information into other files. ■' -

ACKNOWLEDGMENTS

Jacques Vallee, now employed at the Institute for the Future, is responsible ftv the initial design
and coding of the Query I language. Other people who participated in the design discussions for
Help include Michael D Kudlick, Richard W. Watson. Elizabeth J. Feinler, and N. Dean Meyer.
Programmers involved include Diane Kaye and Elizabeth K. Michael. -

REFERENCES

II] (15aI) Richard V, Watson. Robert E. Kahn. Notes from ICCC Planning Meeting 7 July.
Augmentation Research Center, Stanford Research Institute, Menlo Park, California
94025. I2-JÜL-72. (11025,)

[2] (15b2a) Walter Bass. First Thoughts on an Interactive Data Description Language
Augmentation Research Center. Stanford Research Institute. Menlo Park. California
94025. 12-DEC-72. (13279.)

[3] (i?h2a) Harvey G. Lehtman. Notes on Visit of Hal Murray of CCA to ARC: Possible
Interconnections between NLS and the Datacomputer. Augmentation Research Center.
Stanford Research Institute. Menlo Park. California O4025. 13-MAR-74. (22397.)

[4J (I5b2b) Elizabeth K. Michael Harvey G. Lehtman. Staged Forms System. Augmentation
Research Center. Stanford Research \\ Mitute, Menlo Park. California 94025.
6-FEB-73. (21808.)

[5] (15e2a) Dirk H. van Nouhuys. An Introduction to the Current Status of the Help Data
Base. Augmentation Research Center. Stanford Research Institute, Menlo Park.
California 94025. I3-SEPT-73. (19062.)

16] (I5e2e) Mic.iael D. Kud'ick Help Data Base Desigr Augmentation Research Center.
Stanford Research Institute, Menlo Park. California M025. I2-OCT-73 (19634.) "

K rum lodge Workshop Development - Reported as of 7/74 page 131

SR' ARC :0 JAN 7b 5 14PM 2212 J

III MLS Subsystems
15 Query/HELP

[7] (15e2e) Kirk Kelley. Structural Position of Lexicon in Help Data Base. Augmeiilotion
Research Center. Stanford Research Institute, Menlo Park, California 94025.
15-OCT-73. (19675,)

[8] (I5e2e) Jeanne M. Beck. Updating Syntax, Function and Example Branch of Help.
Augmentation Reseatch Center. Stanford Research Institute, Menlo Park. California
94025. 3-DEC-7J. (20681.)

[9] (15e2e) Jeanne M. Beck. Help Software Need. Augmentation Research Center, Stanford
Research Institute. Menlo Park, California 94025. ll-APR-74. (22745.)

[10] (15e2f) (15e4h) A Newel. H A. Simon. R. Hayes, and L. Gregg. Report on a Workshop
in New Technology in Cognitive Research. Psychology and Computer Science
Departments, Carnegie-Mellon university. Pittsburg. Pennsylvania, 7-JÜNE-73.

[11] (15e2f) (15e4j) Ki.k Kelley. The Whole Universe Catalog. Augmentation Research
Center. Stanford Research Institute. Menlo Park, California 94025. JUN-75. (24276.)

[12] (15e3a) Jeanne M. Beck. TNLS Users' Guide. Augmentation Research Center. Stanford
Research Institute, Menlo Park. California 94025. 28-NOV-73. (19200.)

[13] (15e3d) Charles H. Irby. I need Journal help. Augmentation Research Center. Stanford
Research Institute. Menlo Park. California 94025. 4-FEB-74. (21779.) —

[14] (15e3d) Susan R. Lee. Sometimes it's hard to get out . *" help. Augmentation Research
Center, Stanford Research Institute. Menlo Park. California 94025. 23-APR-74.
(22799,)

[15] (I5e3d) Robert N. Lieberman. annoying loop in help menu system. Augmentation
Research Center. Stanfcrci Research Institute. Menlo Park, California 94025.
23-APR-74. (22810.)

[16] (15e3d) Robert N. Lieberman help system : wrong info for menu item. Augmentation
Research Center. Stanford Research Institute, Menlo Park. California 94025
24-APR-74. (22824.)

[17] (I5e3d) Beauregard A. Hardeman. FEB 24 - MAR 2 1974: A Week In Review.
Augmentation Research Center, Stanford Research »' ''u.^. M^nlo Park. California
94025. 9-APR-74. (22674.)

[18] (15e3d) Dirk H. van Nouhuys. Some Good Words for Help. Augmentation Research
Center. Stanford Research Institute. Menlo Park. California 94025. 2-DEC-74.
(24643.)

[10] (I5e4g) Dirk H. van Nouhuys, Kirk Kelley. Four Help Show command Alternatives
Necessary for NLS to be Self-Teaching. Augmentation Research Center, Stanford
Research Institute, Menlo Park, California 94025. I4-MAY-74. (22W.) ■-:

page 132 Knowledge Workshop Development - Reported »s of 7/74

^yzp^^,- - .^--^^iTrim'' '-'<lm''' " " T^'TT-.

SKI ARC 30 JAN 7h c) 34PM 22133

III NLS SubsysttMm
15 Qucry/HELP

[20] (15e4g) Dirk H. van Nouhuys, Minutes of Documentation Meeting of 10-14-74: Status of
Documentation . Plans for Introductory Hardcopy for Help, Plans for Something for
Learners to Read. Augmentation Research Center. Stanford Research Institute, Menlo
Park. California 9407-5. 18-OCT-74. (2427.)

[21] (I5c4g) Dirk H. van Nouhuys. Jeanne M. Beck. Specifications for Help Command
Language Functions. Augmentation Research Center, Stanford Research Institute.
Menlo Park. California 94025. I6JUL-74. (22128.)

[22] (I5e4j) Phyllis Häuser. [Class session at BBN). Augmentation Research Center. Stanford
Research Institute. Menlo Park. California 94025. 2I-JUN-73. (17403,)

[23] (I5e4j) Dirk H. van Nouhuys. Against Command Words in HELP. For more Views..
Augmentation Research Center. Stanford Research Institute. Menlo Park. California
04025. 20-MAR-74. (22441.)

[24] (15e4k) Richard W. Watson. Suggested Changes to Help System Augmentation Research
Center. Stanford Research Institute. Menlo Park. California 94025. 23-JUL-74.

Knowledge Workshop Development -- ReporJed as of 7/74 page I31

-\—. —^-^^^r-' ■- «-, ^. TT

SRI ARC 30 JAN 76 5 34PM 22133

Chapter IV: WORKSHOP FOUNDATION

The Group Allocation System of ARCS Time Sharing Resources
(by Pdv R Rech)

INTRODUCTION

Early in 1973. ARC's computer services became so oversaturated that a user com "ol system had
to be implemented to allocate in a practical and systenat c fashion the availab!* computer
resources to *he many diverse users of ARC's computer ser -JCS. ■■■■>■

To accomplish this goil we have outlined a number of tasks, and have recognized a number of
problem areas. : «.*:

This system has now beer, operational for over a year O'I ARC time sharing syste n. It has also
been implemented on the NLS Utility that is being run by FYMSHARE Corpora ion. as well as
on so^ie other TENEX systems on the ARPANET So far its implementation has been
successful as it has allowed ARC to allocate its computer resources in a balanced fashion while
still maintaining a flexible working environment.

The basic concept of the group allocation system is simple. The entire user population is
partitioned into a set of functional user groups that are each allocated a quota of access slots to
the available computer resources. This reduces the overall scheduling problem to a set of smaller
scheduling problems and allows an effective control of the time sharing performance of the system
by limiting the number of users who can be logged in simultaneously.

All unused access slots are pooled and made available to the entire user population under a lower
priority system called the "off-quota" priority system. Under that system, any authorized user
can utilize, on a first-come/first-served basis, an unused access slot as long as it is not reclaimed
by a priority user who is entitled to an access slot on his group's quota. An "off-quota" user
must release his slot when a priority «jser wants to log in - usually, the one who has been online
the longest Otherwise, all off-quota users can utilize the system as long and as much as they
need it. •.<.■

Thus, by design, the group allocation system fulfills th'« following needs: -»

1) It guarantees adequate responsiveness of the time sharing system by appropriafj control
over the total number of UNers logged in at any time. "* J

2) It guarantees management control over the allocation of the available computer resources to
the various user grouis and it provides a framework for making contractual arrangements for
marketing purposes. ^ :

Preceding page blank
Knowledge Workshop Development -- Reported as of 7/74 page 133

SRI ARC 30 JAN 76 b J4PM 22133

IV Workshop Foundation
16 Group AHocatioM

3) It reduces the overall scheduling problern to a set of smaller schedulipg problems that are
more tractable and that lend themselves much better to informal arrangerrents within grcups.
This preserves some of the flexibility needed for personal needs and variations in work
requirements.

4) It offers the possibility of using all unused slots under a lower priority system and therefore
avoids the potential waste o' a more rigid allocation system. " -

THE GROUP ALLOCATION SYSTEM

Th; entire user population is partitioned into a sma'l number of functional user groups in such a
fashion that each member belongs to one group and one group only. All members of such a
group should 'deally havr similar functions, e.g.. be programmers, or staff members, or members
of one same project. They should have approximately similar needs for computer resources and
be granted similar access rights to these resources. All the members of a given group should also
work closely together in order to be able to understand each other's working requirements and be
sensitive to each other's actual constraints.

Either by negotiation or by managerial decision—or by subscription in a multieüent situation-each
group is allocated a quota of the total number of available "access slots" to tlv computer
resources assigned to users. These quotas can vary with the day of the week and the time of the
day and can be renegotiated or changed when the circumstances demand it. However, the
premium should be on stability, as it is much easier for both individuals and groups to plan ahead
when their working environment is stable and predictable. Stability of group quotas fosters ease
in planning and greatly reduces the uncertainly level of everyone concerned. A great deal of
waiting and guessing can thus be eliminated and the many frustrating negative reinforcements that
are inherent in unpredictable or unstable services c^n be avoided. ■

Provided he can log in under his group's quo\ and ba ring operational difTiculties. a member of
a given group is guaranteed uncondhional usage r the available computer resources. Such a user
is called a "quota" user. A quota user has total priority over all nonquota users. He can work
online as long as he wants and use as much of the system as he needs as long as the group quota
does pot change and the informal group arrangements allow him to do so.

When all quotas are not filled and some empty slots remain available, the ofl'-quota pool of
unused slots is made available on a nrst-com^/first-served basis to all users who request computer
access, regardless of their group. They are informed at login time that they are on an off-quota
status. This means that they can use the available slots as long as no regular quota users are
reclaiming them. When a quota user is reclaiming one of these slots, the off-quota user who has
been online the longest gets a message asking him to log out, within say five minutes, and if he
does not comply he gets logged out automatically after that time is over.

It is important for every user to have easy access to the system for brief periods of time in order
to be .'ble to get a message, or send one, or print out a file, or for any other short task that needs
to be done when a user has his working material online. The Express Login feature has been
designed to allow hiri to log in for five minutes without having to log i.i under his quota or on

page 136 Knowledge "Workshop Development - Reported as of 7/74

SRI-ARC 30 JAN 76 l; 34PM ??133

IV Workshop Foundation
16 Group Allocation

the off-quota priori!). The command is ELOG instead of LOG to log in under that system.
Only two users can be in ELOG simultaneously and therefore a user might have to wait i while
before being admitted under ELOG. A queueing system has been considered but >o far has not
bee» implemented.

Cliange of priority status: A user's prionty mav change. This occurs when a quota user logs out.
He is then replaced on the quota prioriiy iist by the user of his group whose name is found first
on the off-quota list. Thus the priority status of the latter is changed and his name is dropped
from the off-quota priority list. ■

Demonstration priorities: Another exception is the "visitor" priority. Under such a priority, any
authorized personnel should always be allowed to log in for demonstration purposes whenever the
need arises. This would allow easy access to a terminal without having to make special
arrangements. This type of priority should have precedence over all off-quota priorities and.
when the system is fully busy with quota users it should have precedence over a predetermined
quota user, such as a staff user.

Partitioning of CPU time: In the NLS environment, DNLS users are using on the average 49^ of
the system when they are online and the TNLS users 27c. Thus there is no real need for
partitioning ihe CPU time as long as users are limited by the schedule's queueing .ystem from
using an inordinate amount of CPU time when the system is loaded. It is even very likely that
the ovs.'.'l service would deteriorate if such a CPU time partitioning would be instituted as the
average group populations are not large enough to absorb temporary h,j,h-CPU time needs. The
overall >ystem wo^ild move even further into the unsteady state that is already hindering the
performance under present conditions. ■..■■<

Nonpriority users: Some users might be authorized to use only off-quota slots. If they do not
belong to any group, ^hey can only UK I in the off-quota mode and therefore the group allocation
system gives us the pos.ability to have nonpriority users on the system.

Group status: To plan his work effectively schedule and to make it compatible with his group's
schedule, a user needs specific information about the status of the system, about his groups
utilization schedu e and statistics, and about his current priority status. A command called
GROUPST gives all this information to th • users.

SUMMARY

In the g oup allocation system, all the computer services that are assigned to users are always
available to the members of all groups.

When the system is not fully utilized by quota users, the slack is available on a
first-come/first-served basis to whoever wants it or needs it. Thus when the total demand is
less than the total number of slots available there are practically no access restrictions and the
users can utilize the system as they please for as long as they want.

Knowledge Workshop Devclopmcni Reported as of 7/74 page 137

SRI-ARC 30 JAN 76 5 34PM 2?! 33

IV Workshop Foundation
16 Group Allocation

When the total demand exceeds the total number of slots available ihen the group allocation
system decides the allocatica priorities and actually manager» the off-quota rool in the manner
discussed ikixwe. *

Thus, the group alloca'ion sjstem is a partitioning system only for priority purposes, and not a
partitioning system of the available time sharing resources per se.

ACKNOWLEGEMENTS

The Group Allocation System was implemented by Donald C. Wallace and William R. Ferguson.

page 138 Knowledge Workshop Development - Reported as of 7/74

^ ^■^--.-i "j, i-i.iii rf agii^—IT"-I ■ liiiii. -Mil in .i.iir'-i.Vi .^-jfcji-.^-^j ^^S«B&ESUH — nin. nr-iir-

* I' ' I

-

SRI- ARC 30 JAN 76 5 34PM 2?. I 13

NLS File System
(by Charles H Irby and Harvev G Lehtman)

INTRODUCTION

NLS operates on a hierarchical, random file system with several unique features evolved over the
years that make possible the efficient online interaction used by the ARC community.
Information stored within separate structure imd da.a blocks aids in rapid movement within and
between NLS files; a "partial copy" locking mechanism provides security gainst attempted
modification of a file by more than one user at the same time and provides a high degree of
backup security against system failure or user error. A technical descrption of the file system as
well discussions of motivating factor wading to the implementation are also discussed. The
design of the file system provides room for further extensions, some of which are also examined.

Discussion of the hierarchical structure of NLS files at a user level, as well as a description ot the
user commands that permit movement through the files, may be found in [1].

GENERAL CONSIDERATIONS LEADING TO THE CURRENT DESIGN

The format and structure of NLS files were determined by certain design considerations:

It i.. desirable to have virtually no limit on the size of a file. This Pieans it is not practical to
have an ent're file in core when viewing or editing it.

The time required for most operations on a file should be mdependent of the file length. Thaf
is, small operations on a large file should take roughly the same time as the same operations
on a small file. The user and the system should not be penalized for large files. ^ ;

In executing a single editing function, there may he a large number of struciural operations.

A random file structure satisfies these considerations. Each file is divided into logical blocks that
may be accessed in random order. : -.

An early version of the file system was implemented on the XDS-94Ü. Minor changes in the
logical structure of the file system were made in the conversion of the system from the XDS-^40
to the PDF-10 for two reasons: ■

1) The current ARC programming language, L10, is more powerful tnan the several languages
it replaces, MOL and the SPLs. L10 permits special purpose constructions anywhere in its
code, h is a higher level language and provides greater compiler optimization. ■ '<

2) An effort has been made to further modularize the functions within the system to jase
development by a team of programmers.

Knowledge Workshop Developmcnl - Reported as of 7/74 pag; 13^

- -nn-art irir I i .'i.

SRI ARC 30 JAN 76 & 34PM 22133

IV Workshop Foundation
17 NLS File System

RELIABILITY AND THE NLS FILE SYSTEM

The reliab'lity and security of file data both against system crashes and in face of the possibility
of attempted simultaneous modification by more than one user were central goals in the design of
the NLS file system. An attempt was made to minimize the amount of work which would be lost
due to both hardware and operating system difficulties. =:

Unlike the sequential file systems of some editors which require copying large sections of a file
whenever an edit is made. NLS modifies copies of pages in which structural or data changes are
made: all data in the original file is secure; and a minimum of unaffected data is copied. Still
other editors maintain recent changes in a dynamic buffer which may not be incorporated into the
file in the event of a system crash, in NLS, barring a major hardware collapse, all changes other
than those specified by the command being processed are present in the copied pagtv Again, the
original file is untouched. =

Other techniques to assure high reliability have been used such as org- sizing the code and
sequence of operations in a way to minimize time windows of high vulnerability. : -

An important problem in an online team environment such as that at ARC involves group
collaboration on the same data files. The current file system permits multiple readers and a single
writer to a file. The person obtaining write access to a file locks it in a manner described below;
no other user is then permitted io write on the file, though they may read the original material.
Readers without write access do not see the changes of tne user currently editing the file until the
file is explicitly "updated," causing the incorporation of edits and the unlocking of the file. Thus
there can be no conflict between the edits of more than one writer.

Details on the partial copy locking mechanism which implements these features of the NLS file
system arc discussed below in section (17f7) ; c-*

EXTENSIONS TO THE CURRENT FILE SYSTEM

There has been discussion within ARC concerning possible extensions to the current NLS file
system. An example is the design of a file system that has property lists at each node. Instead of'
the current system in which there is L one-to-one correspondence between ring elements and
(textual) data elements associated with a particular node in the file. In the property list scheme
there could be a list structure of data nodes pointed to by one or more structure elements. There
would be no restriction on the types of data node: for instance, graphic or numerical information
may be possible as well combinations of data types within u single node. Such a scheme would
prove useful in a cataloging system. - 3

The possibility of implementing the NLS file system on the CCA Datacomputer in the
Datalanguage has also been discussed. 3

nagc 140 Knowledge Workshop Development - Reported as of 7/74

SRI AK(JO JAN 76 CJ 34PM 221 33

IV Workshop Foundation
17 NLS File System

SHORT TECHNICAL OVERVIEW

This section gives a brief overview of the implementation of NLS files. For more detail see
section (17g).

Block Header and Types of Blocks

An NLS file is made up of a file header block; and up to a fixed number (currently 465) of
512-word (= equals one TENEX page) structure blocks (up to 95); and data blocks (up to 370).

There are several types of blocks, each with its own structure

File header block-always page 0: contains general information about the file.

Structure (ring) blocks-contain ring elements that implement tne NLS structure: there

currently may be a maximum of 95 of these blocks, each containing 102 five-word ring
elements. They may appear in file pages 6 through 100. > !••

Data blocks-contain the data (currently text) of NLS statements: each data block has
Statement Data Blocks (SDBs) that have five-word headers followed by text strings. There
currently may be a maximum of 370 data blocks. They may appear in file pages 101
til rough 471.

Miscellaneous blocks—not used in the current implementation

File Header Block : .

In each file there is a header block that contains general information about that particular file.
The header block remains in memory while the file is in use. ■ !-

The file header is read into core by the procedure (nls, ioexec. rdhdr,. This procedure checks
for the validity of certain keywords. If the file is locked and has a partial copy, the header is
read in from the partial copy. If the partial copy header block is invalid in the key spots, the
file is unlocked and the header read in from the original file. If that is bad, the file may be
initialized. : r'-.

RDHDR sets the value of file head[flleno] where fileno is the NLS file number of the file (an
index into the file status table that provides, among other things, a correlation between JFNs
for the original ami partial copy and the single NLS tile number).

Procedures in (nls, filmnp,) are responsible for reading, manipulating, creating, garbage
collecting, and storing into ring blocks and ring elements within those blocks, and data blocks
and statement data blocks within them. . r <

Knowledge Workshop Developmcnl - Reported as of 7/74 page 141

-

SRI ARC 30 'AN 7o 5 34P(V1 22133

IV Workshop Foundution
17 NLS File System

Structure Blocks -- Ring Clements

Conceptually an NLS file is a tree. Each node has a pointer to its first subnode and a pointer
tv) its successor. If it has no subnode, the sub-pointer points to the node itself, ii the node
has no successor, the successor pointer points to the node's parent. Each node is currently
represented by a ring element. These ring elements point in turn to the associated data block.

Structure blocks a ntain five-word ring elements with a free list connecting tl .)se not in use

Data Block -- Statement Data Blocks

Data blocks are composed of variable sized blocks called Statement Data Blocks (SDBs) lint
contain the text of NLS statements. Each SDB has a five-wor \ header with node related
information followed by ti<e text made up of 7-bit ASCII characters packed five to a word.
New SDBs are allocated in the free space at the end of a data block. SDBs no longer in use
(because of editing changes) are marked for garbage collection when the free space is
exhausted. -

String Identifiers (STIDS) and Text Pointers

A string identifier (STID) is a data structure used within NLS to identify strings (possibK
within NLS statements)

If the string is in ;';i NLS statement, the STID contains a file identifier field (STFTLE) and
a ring element identifier (STPSID). ---^

Tne presence of a file identifier within the STID permit all editing functions to be carried
out between files.

ProcHures in (nls. filmnp,) and (nls.strmnp.) j)ermit traversal through the ring slructi-'e of a
file given an STID. See, for example, (nls, filmnp. getsuc). which gets the STID of the
successor of a statement; see also (nls. filmnp. getsdb). which returns the STPSDB for the
statement whose STID is provided as an argument (An STPSDB has. like an STID. a file
numbe' field and a pointer to a data block, a STPSDB)

Text pointers are two-word data structures used with the string analysis and construction
features of LIO They consist of an STID and a character count.

Locking Mechanism - Partial Copies

The NLS file system under TENEX provides a locking meihamsm that pr< "• wfs against
inadvertent overwrite when several people are working on th^ same file. Once a u-er starts
modif>ing a file, it ^ "locked" by him against changes by other users until f.e deems his
changes consistent and complete and issues one of the commands: L'pdate Fil ■. Update File
Compact, or Delete Modifications, which unlock the file. A user can leave a file locked
indefinitely-this protection is not limited to one console session.

page 142 Knowledge Workshop Dev.-topmcni - Rcporled as of '/74

-u^irr--- -i.

^f^lt ^.jjT-gg

SHI-ARC JO JAN 7b 5 34PM 22133

IV Workshop Foundation
17 NLS File SysU'in

When a file is locked (is being modified), the user who has modification rights sees ; il of

the changes that he is making. However, others who read ihe file will see it in its original,

unaltered state. If they try to modify it, they will be told that it is locked by a particular

user. Thus the users can negotiate for modification rights to the file. > »■

This feature is implemented through the use of flags in the status table in the File Header and

through the partial copy mechanism. < -

All modifications to a file are contained in a partial copy file. These include modified ring

elements and data blocks.

Any file page that is to be and that is not in the partial copy%i scovered through a wriie

pseudo-interrupt) is copied into the partial copy. All editing takes place there. The

TENEX user-settable word in the FDB (TENEX file data block) .or the original file

contains locking information.

The NLS Update file command merely replaces those structure and data pages in the original

file that have been superseded by those in the partial copy, unlocks the file, and deletes the

partial copy. I Update file old. this is done in the origina1 file; for Update to new version,

the pages are mapped to a rew file ,vom he original or partial copy where necessary. The

Update file compact comnvind garbage collects unused space; the update file command does

not.

Core Management of File Space *«

When space is needed for more data, the following steps are taken, in order, until enough is

found to satisfy the request (See (nls, filmnp, nwrngb), (nls, filmnp. newsdb). and related

routines): ^

1) Core-resident pages are checked for sufficient free space. <-■>'■

2) Other pages are checked for free space. If one has sufficient space, it is brought in. «^

3) If garbage collection on any page in the file will yield a page with sufficient free space,

ther the page that will give the most free space is brought into core and garbage-collected;

otherwise a n:w page is created. -^

DETAILED TECHNICAL DISCUSSION

Note on Fields in NLS Records and Other LIO Language Feature : '

Several parts of this section arc taken directly from record deciaT'ions in the code of the NLS

system written in the LiO programming language. '

Record declarations in the LIO language serve as templates on data structures declared in the

system Byte pointer instructions are dropped out by the compiler permitting access to

Knowledge Workshop Develop icnl -- Rcnorled as of 7/74 page 143

bRI AW< 30 JAN 76 rJ 34PM 22133

IV Workshop Foundation
17 NI.S File System

spccifi.'d parts of the array. Multiword records are filled from the lowest to the highest
addre>s of the array. Within words, bits are allocated from the first bit on the right. If
several fields fail to fill a 36-bit word and (he next field definition would go over the remaining
bits in the word, the field is allocated in the next word available. : * ;

Example:

Bit 0 is the leftmost bit in the word; bit 35 the rightmost. Suppose there is a record
declaration of the form:

(newrecord) RECORD 9e A two word record rr
fieldl[IO]. r/rbits 26 through 35 (rightmost) of first word^f
field2[25]. ^bils 1 through 25 of first word K
field3[15]; ^rbits 21 through 35 of second word (field would not fit in remainder of first
word9f
DECLARE array[2);

There may be code within a program of the form:

variable - array.field2;
array.field3 - 20;

?n Ll(), false is zero and true is nonzero.

See the MO manual for further information.

Block Header and Types of Block .

An NLS file is made up of a file header block and up to a fixed number (currently 465) of
512-word (one TENEX page) structure blocks (up to ^5) and data blocks (up to 370).

Each block has a two-word header telling the type and giving the file page number and an
index into p ci»re status table. The record declaration from (nls. utility.) follows: •

(fileblockheader) RECORD 9; fbhdl - 2 is lengths
fbnull[36]. %müseö%
fbind[9], ^status table index%
fbpnump?], Crpage number in file of this blocks
fbtype[5]; CHype of this block (types declared in (nls. const.))
hdtyp 0 header
sdbtyp 1 data
rngtyp 2 ring
jnktyp 3 nusc (such as keyword, viewchange etc. pr

There are several types of blocks, each with its own structure. '

File header bloek—always page 0: contains general information about the file.

püge 144 Knuulcdgc W(>rkshi»p [X-vclcpnu-nt Reported as of 7/74

-i- -■ — ' ' rr-—"'—

SRI ARC 30 JAN 76 5 34PM 22133

!V Workshop Foundation
17 NLS File System

Structure (ring) blocks-contain ring elements that implement the NLS structure: there
currently may be a maximum of 95 of these blocks each containing 102 five-word ring
elements. They may appear in file pages 6 through 100. ' '-"

Data blocks-contain the data (currently text) of NLS statements: each data block has
statement data blocks (SDBs) that have five-word headers followed by text strings. There
currently may be a maximum of 370 data blocks. They may appear in file pages 101
through 471. . '"

Miscellaneous blocks-not used in the current implementation. -. «.^

File Header Block • ^

In each file, there is a header block that contains general information about that particular file.
The header block remains in memory while the file is in use. "^

FILE HEADER CONTENTS (taken from (nls, data,)): ^

DECLARE EXTERNAL
%...file header...%
% DONT CHANGE THE ITEMS IN THE HEADER %
filhed[5].
% these extra words may be taken for additions to header%
fcredt, % file creation date-TENEX gtad jsys internal format %
nlsvwd = 1,
% nls version word; changed when NLS file structure changes %
sidcnt, %count for generating SID's%
% An S > (statement identifier) should not be confused with PSIDs (see below). The SID
is unique, r generated for each statement in a file and is not reused if a statement is deleted:
it is unchanged if a statement is moved. It may be used by a user for accessing particular
statements in a file without worrying about changes because of additions or deletions (as is
the case with statement numbers). The sidcnt field in the header is increased by one as
statements are created. The value i^ stored in the RSID field of the ring element (see
description below). %
finit,
% initials of user who made the last write (by updating or outpiiting the file)-see DATA
BLOCK description below for explanation of initials %
funo, % user number (file owner) %
Iwtim, % last write time-TENEX internal JSYS gtad format %
namdll, % left name delimiter default character %
namdl2. % right name delimiter default character %
rngl.
% upper bound on ring (structure) file blocks used 95-
dtbl. % upper bound on data file blocks used %
rfbs(6].
% start of random file block status tables (see description below) %
rngst[95], % ring block status table %
dtbst[370], % data block status table %
mkrtxn = 20, % marker table maximum length %
mkrtbl, % marker table current length %

Knowledge Workshop Dcvclopmcnl - Reported as of 7/74 page 145

SRI ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
17 NLS File System

mkrtb{20], % marker tab'e f/c
% Markers provide an alternative form of NLS addressing;
description %
filhde; %end of the file header^

see NLS Users Guide for

Notes on File Header "*■

The file header is read into core by the procedure (nls, loexec, rdhdr). This procedure
checks for the validity of certain keywords. If the file is locked and has a partial copy (the
file thai includes current modifications-see below), ihe header is read in from the partial
copy. If the partial copy header block is invalid in the key spots, the file is unlocked and
the header read in from the original file. If that is bad, the file may be initialized.
RDHDR sets the value of fileheadlfileno] where fi.^io is the NLS file number of the file
(an index into the file status table which proude:, among other things, a correlation
between JFNs for the original and partial cop\ ard the single NLS file number; see
description of the file status table below.)

(nls, ioexec, setfil) initializes a file leader.

It should be noted that fields within a file header are accessed by full word indexing rather
than by record pointers for speed. Thus we have the following typical code (from (nls.
utilty, esc)) tha: reads the default name delimiters from an NLS file header:

ELSE IF rplsid.stpsid = origin THEN
BEGIN %use standard delimiters for that file%
fiidloc - fileheadlrplsid.stfile] - Sfilhed;
dlleft - [ftidloc + Snamdll];
dlrght ~ [fhdloc -f $namdl2];
END

.' Iso, code from (nls, ioexec, rdhdr) that gets the address of the word in core that contains
the nls version word for the file whose header has been read in order to check its validity:

&vwd ^ (header - filhdr(fileno))
filehead[fileno] - header;

Sfilhed + Snlsvwd;

The file header is initialized by (nls. ioexec. rdhdr) which fills up contiguous words declared
in (nls. data.) and then moves the contents of those words to page zero of the file.

page 146 Knowledge Workshop Development •• Reported as of 7/74

acrf^^^^™-—^ _ f - T#rt -T-T— - ssaä ^^.

SRI ARl .in JAN lh 5 34PM .'.'" JJ

IV Workshop Foundation
17 NLS File Systcin

Procedures IM (ills, Ulmiip 4 arc responsible lor leading, manipulating, creating, garhagc

collecting, and sto ing into ring blocks and ring elements within those blocks, and data blocks

and sta.ment data blocks within them.

Random File Block Status Table Entries in File Header

The random file block status tables appear in the file header. There is one word per ring

bio« k .>r data block page. Each entry contains the following: recora declaration and comments

from (nls. utilt>.).

(rfstr) RECORD rir Random file block status recoH (The entry will be equal to 0 if the

page (i.e., block) in the file is unallocated. Othe wise, the entry will be an instance of the

following record.)^
rfe.\is[l]. rj-true (i.e.. nonzero) if the block exists in the file^
rfpart[IJ, 'r true it block comes from partial copy9S
% Whet her page has been modified by a user.
(rfpar« uill be true in that case.)*^
rfnull[2], ' \ unusedrY
rfused[10], ^rused word count for the blocks
cf Current used word count (may be used to calculate post-garbage collection free space

count.}«?
rlTreeflO], 9f:free pointer for the blocks
%Free space count (for data block)
Prjgarbage collection free space count.
Free list pointer (for ring block)^
rfcorc[9]; ^rO then not in core, else page index^r

No'cs on Random File Block Status Tables

The table RIBS in the file header is broken into two sections, each of which contains a

collection of records of the above type. The first section includes RNGM entries from

RFBS[RNGBASJ up to and including RFBS[RNGBAS +RNGM-1] and contains

information about the ring blocks in the file. (RNGBAS is currently 6 and is the first pace

in a file that may be a ring block; RNGM is currently ^5 and is the maximum number of

ring blocks permitted.)

The second section includes DTBM entries from RFBS[DTBBAS] up to and including

RFBS[DTBBAS f DTBM-1] and contains information about the data blocks in the file

(DTBBAS is currently 101 and is the first page in a file that may be a data block, DTBM

is currently 370 and is the maximum number of block blocks permitted.) The entry

RFBSfRNGBAS r ij may also be referenced as RNGST[i). likewise RFBS[DTBBAS f i]

may be referenced as DTBSTfi]. The index in RFBS of a block is the actual page number

of the block in the file.

A pointer to an SDB (FSDB) consists of a nine-bit data block number in the range

[O.DTBM) and a nine-bit displacement fron the start oi i!ie block The \ariable DTBL is

maintained in each file header as the current upper bound on allocated data blocks for that

Y mmlcdgc Workshop [)odopmcni - Reported as of 7/74 pa, f 14""

rtüa

SRI ARC 30 JAN 76 b 34PM 22133

IV Workshop Foundation
17 NLS File System

file. This is used to limit the search for a location for a new SDB. The variable DBLST
contains the index of the block from which an SDB Aas last allocated or freed. ; ' -"

A pointer to ring element (PSID) consists of a nine-bit ring block number in the range
[O.RNGM) and a nine-bit displacement from the start of the block. The variable RNüL is
maintained in each file header as the current upper bound on allocated ring blocks for that
file. This is used to limit the search for a location for a new ring block. The variable
RNGST contains the index of the block from which a ring was last allocated or freed. : *::

Structure Blocks - Ring Elements

These blocks contain five-word ring elements with a free list connecting those not in use. '^

(ring) RECORD C^ringl is length% % from (nls. uiilty.) <7r
rsub[18J, Ccpsid of sub of this statmenf/r ' -
% A pointer to the first substatement of this statement %
rsuc[18]. %{)sid of sue of this statement % ' ■
% A pointer to the successor of this statemeni (to the (We:if if no successor) %
rsdb{18], %psdb of sdb for this statement^ "-'
% Pointer to the data block that contains text for this statement. %
rinstl[7], %DEX interpolation string-scratch spaced ":

% Information in scratch fields may be reset and used by other subsystems such as DEX.
No oth**' assumption concerning their contents shold be made. %
rinst2[7J, %DEX interpolation string- scratch spaced " ^
rdummy[l], % DEX dummy flag-scratch spaced . '-
repet[3], %DEX repetition- scratch space% "'■■
rhf[\]. %head flag, true (= 1) if this is head of plexor ' "^
rtf[l], %tail flag, true if tail of plex% ' ^
rnamef[l]. %name flag, true if statement has a name% * -
rnull[2], %unused% = "-■■
rnalneh[30], %name hash for this statements ; "
% h^sh algorithm may be found in (nls, utilty, hash) %
rsid[30]; %statement identifier*^ ^
% See S1DCNT description in file header above. %
^although only need four words, use five so that have room to gr«.,w9r «^

PSIDs and PSDBs are pointers to other ring or data blocks in a file. They iu»ve two nine-bit
fields: one (stblk) is a block index; the other (stwc) is a word displacement within that block.
Procedures in (nls, filmnp.) permit the traversal of a file's structure.

Given an STID (see below), one may use the primitive procedures in (nls. filmnp,) -e.g.. (nls.
filmnp. getsuc)-or the more elaborate procedures in that file-e.g., (nls, filmnp, getnxt)-to
move around to related ring elements and re'rieve or change (display or edit) relevant data. •

There are two fixed" values for PSIDs for special statements: '■'*

The PSID of the origin statement is always 2.

page 148 Knowledge Workshop Devclopmenl - Reported as of 7/74

__-

SRI ARC iO JAN ?*> b iAPM ??] J ?

IV Workshop Foundation
17 NLS File System

The entire STID (and hence FS1D) of the end of a file is endfil (^-1). which docs not
correspond to any real statement in the file, but which is returned by the "get" procedures
In flmnp and strmnp to indicate the end has been reached or an erro^ has been found

Some other conventions implemented in the file structure make possible special features in

NLS:

The successor of a statement with no real successor is its "parent.1'

The substatemei.i <»f a statement with no sub is itself.

The origin is at a unique level; thus statement I is the sub of the origin.

Data Block -- Statement Data Blocks

Data blocks are composed of variable-si/ed blocks called Statement Data Blocks that contain
the text of NLS statements. Each SDB ha.^ a five-word header with the following information
followed by the text made up of seven-bit ASCII characters packed five to a word. New SDBs
are allocated in the free space at the end of a data block. SDBs no longer in use (because of
editing changes) are marked for garbage collection when the free space is exhausted.

(sdbhead) RECORD '/rsdbhdl is length'/r 7r from (nls. utilty.) r/c
sgarbfl], %true (non-zero) if this sdb is garbage, i.e.. no longer used^r
slength[9], %number of words in this sdb%
schars[ll], ^number of characters in this statement^
slnmdl[7], %lefl name delimiter for statement^
srnmdl[7]. bright name delimiter for statements
spsid[18j. Spsid or ihe statement for this sdb9r
S Pointer to ring element.%
sname[l I]. Or position of character after nameCr
Vr This is i for a statement with no name. Thus if the text of the statement were:
(author) The person who
and the name delimiters were '(" and ")". the value of this field would be 9. r'f

stime(36]. S date and time when this SDB created^
r/f This is stored in the TENEX internal format; see the TENEX JSYS manual, glad jsys
r/f

sinit[2l]; rr initials of user who created this SDBS
S This is stored in 5-bit characters to permit NLS user idents of four characters and still
maintain compatibility with files created when only three-character idents were available
This kluge still requires translation of old-style idents. but at least both old and new style
fit in the same space. [Sec (nls, filmnp. gctint) and (nls, filmnp, trnsintIS
Ssgarb and slength must be in the first word of the header for newsdoS S although only
need four words, use five so that they will have room to growS

String Identifiers and Text Pointers

A string identifier (SLID) is a data structure used within NLS to identify strings (possibly
within NLS statements).

Knowlcdpc Workshop Development •■ Reported as of 7/74 page 14^

bR! ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
17 NILS File System

If the siring is in an NLS statement, the STID contains a file identifier field (STFILE) and
a ring element identifier (STFSID). (See PSID description above under ring elements.)

The presence of « file identifier with n IV STID permit all editing functions to be carried
out between files. : •• *;

Procedures in (nls, filmnp.) and (nls.strmnp.) permit traversal through the ring structure of a
file given an STID. See, for example, (nls, filmnp, getsuc), which gets the STID of the
successor of a statement; sec also (nls, filmnp. getsdb), which returns the STPSDB for the
statement whose STID is provided as an argument. (An STPSDB has. correspondingly to an
STID, a file number field and a pointer to a data block, a STPSDB). • •

Text pointers are used with the string analysis and construction features of L10. They consist
of an STID and a character count.

Other Relevant arrays

The following arrays are used in system core and file management. They are described here to
facilitate the study of the NLS file-handling code. "^

Filehead •«'

An array of pointers (each contained in a single word) to the file headers of files currently
in use is FILEHEAD. At present, up to 25 files (and their partial copies, if any) may be
open simultaneously. ^

CORPST and CRPGAD

The array CORPST provides the correspondence between the 100 (octal) pages in core
reserved for file pages and user program buffer and the pages in files that are currently
loaded into core. (This is really a maximum of 100 octal since the user program buffer
may be enlarged into this area; the maximum is given by RFPMAX - RFPMIN 4 1.) : '*

(corpgr) RECORD r.rone word, core page status record, gives status for a given core page
for random files.^
ctfullfl], %true if the page is in use%
ctfile[4], %f\\c to which the page belongs; an NLS file number^
ctpnumfQ], %page number within the file%
ctfroz[3]; %number of reasons why frozen (locked into core because oi some current
NLS system need- editing is in progress on a statement, a statement is being displayed,
etc) %

The array (ORPST is the core page status table and is made up of instances of the above
record. (RFPMAX (current user program buffer size) gives the number of core pages that
may contain file pages. The core pages are located at positions indicated by the array
CRPGAD (core page address). CORPST is indexed by numbers in the range (RFPMIN.
RFPMAX). The elements in this array arc actual addresses. The starting location of page

page 150 Knowledge Workshop Development -- Reported as of 7/74

■ . mtmrn

■ - -

SRI AK(. 3Ü JAN 7b 5 J4PM 221J3

IV Workshop Foundation
17 NLS File S\slcm

k is given by crpgad[k]. RFFMIN is initialized to be 5; four pages are initially allojated
for a user program buffer. See (nls, usrpgm, gpbsz) for the procedure that changes these
limits. v

FILST

An NLS file number provides an index into ttie FILST, the file status table. This 100-word
array is made up of 25 four-word entries and contains the following information for files of
interest that have NLS file numbers at any time (these may or may not at that time be
open; they do. however, have JFNs.) The information comes from the record declaration
in (nls. utilty,):

(filstr) RECORD ^ File status table record, entry length = filstl = 4. max no. entries
filmax = 25Cr
flexispi, %true: entry represents an existing file%
flhead[9], %crgpad index of the file header%
flbrws[l], Vrthv file in browse mode^
fllock[l], ^This file was locked by another user when loaded%
npcread[l]. %PC read only---,rite open failed (openpei-see discussion of partial copies
below'/r
tlaccm[8], ^file access mask^
% Used to tell whether or not the file may be written on by the current user. Used
primarily for files such as those in the Journal that are read-only to most users <}
ndirno(I2], Crdirectory number for the original file'*
flpart[18], r/rJFN for the partial copy^r
f!bpart[l8], ^rJFN for the browse partial copy*^
florigflH], ^rJFN for the original file%
flastrflS], ^address of the file name string^
flpcst[18]. Craddress of partial copy name string^
nbpcst[l8]; rf address of browse partial copy name stringcr

REFERENCFS

[I] (17b2) Douglas C. Engelbart and Staff of ARC Computer-Augmented Management-System
Research and Development of Augmentation Facility [Final Report]. Augmentation
Research Center. Stanford Research Institute. Menlo Park. California t)4025. APR-7()
(5139.)

Knowledge Workshop DevclopmciU - Reported as of 7/74 page 151

T - — -i.

SRI ARC 3U JAN 76 b 34PM MlsS

S(ft\vare Engineering
(bv Harvev G L.'htmun and Kenneth E Viclor)

FRAMEWORK: THE SOFTWARE DEVELOPMENT PROBLEM

Many observers have become concerned recently about the inefficiency in software production.
Overruns in cost and delivery time are common, quality is low, and maintenance cost is often
greater than tnc cost of the original development.

A study of the software production needs of the Air Force cited in Boehm f2"J estimated the
1^72 Air Fore software costs to have been be*ween $1 and Si.5 billion per year while
hardware costs vere in the range of $0.3 to $0.4 billion. The ratio of software to hardware
costs is predicted to increase in the next few years until it reaches a level of about 9 to 1 in
the 1980s as hardware costs continue to go down and the costs of personnel increase. -

Typical of the recently mounting interest in software production was a symposium on "The High
Cost of Software" held at the Naval Postgraduate School in September 1973 [I], Those
attending the conference agreed that direct and indirect software costs are unnecessarily high and
a- ■ "rowing rapidly. Thc^ discussed the following general problem areas in controlling the cost
and increasing the quality of large-scale software production in the Federal Government:

1) Programmer management and rganization Tools for coordinating and controlling
resources and tasks in t!i: design, development, testing, documentation, release, and
maintenance of software a.c not widely used; unamiV™»oiis means of specifying requirements
for software and effective bookkeeping facilities for controlling an inventory of programs are
needed,

2) Design: Unambiguous languages for software designs are desirable; effective recoidcd dialog
is essential to minimize duplication or contradiction of previous design decisions.

3) Implementation and debugging: Currently, offline preparation of code, batch compilation,
offline debugging techniques, and the use of poorly deigned languages and programming
methods are widespread, neglecting the major advances in productivity made possible by the
use of online tools, and structure ' programming methods.

4) Documentation: Effective documentation methods must be developed and used since
undocumented programs are virtually impossible for other programmers to understand and
maintain. ^

5) Analysis: Metering and analytic tools for discovering bottlenecks within produced codes are
essential to ensure software quality.

6) Quality control: Better methods for expressing or checking the correctness of a program
with respect to its intentions or requirements would be beneficial. *'

Knowledge Workshop Development - Reported is r' 7/74 page 153

Preceding page blank

---..^r.

SRI ARC 10 iAN 76 5 34PM 221 33

IV Workshop Foundation
18 Software Engineering

7) Maintenance: Muui1"» \.;ions. including bug fixes and upgrading of capabilities, are often
difficult to carry oui due in pan to difficulties in coordination, documentation, and analysis.

Many of these problems ha\e been successfully approached and solved, and the solutions used, in
research environments (e.g., online code preparation and debugging and the use of structured
programming techniques). However, the resultant tools anu techniques are not currently in wide
use in large software production groups. -*

Throughout its history, ARC has taken steps to augment software engineers- those people
concerned with software production, including programmers, software production managers, and
technical writers. The developments described below are part of our ongoing activity to create a
full and balanced set of tools, techniques, methods.and principles to aid those users.

SOLUTIONS: ARC EXPERIENCE WITH SOFTWARE ENGINEERING TOOL:, AND
TECHNIQUES

Programmer Mana, ment and Organization -

To assist in the coordination and control of programming tasks, we have adopted a
programming team approach. Each team is responsible for a specific programming task and
consists of one or more programmers with one of them being the task pusher--the person with
U»- responsibility f^r completing the task. A prograaimer is usually on more than one team at
any linic, and may be the pusher of one team, ind a member of another team. Teams
frequently interact with each other, and one team may subcontract with another team for
subtasks. :ec:;

The source code for the large NLS is divided into 50 files. Work on the system is currently
carried out by ten programmers who often have reason to edit the same file. The Partial Copy
locking mechanism controls editing access to files and prevents our tripping over changes made
by each other. (This mechanism is described in Section 17t7.) ;<:

A status file is to record changes 5c the system and to note when new running systems are
made available to general users. Backup systems are also noted in this file. (Development
takes place in an experimental system which is used by programmers until it is ready to be put
out to the general ARC community. These evolutionary steps in NLS developments lake place
approximately on a week!; oasis.) ^

Programmers make frequent use of the signature facility of NLS to discover the originator or
most recent modifier of code :» = :

Any change to the content of NLS statements is automatically associated wiih the
identifying initials of the user making the change and the date and time of the edit. A
special filter may be used to turn these signatures on or off. Addi'ionally. elements in
content pattern filters permit selective display of statements edited by particular users, or
statements edited before or since particular dates. .»tia

page 154 Knowledge Workshop Development -- Reported as of 7/74

TriTg-T-ir IT - '^—' —
u._u^. ,-.MJ^itSr-rmrTf-»aaÜ

SRI-ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
18 Software Engineering

Design 8 b:

The ARC Journal and other Dialog Support tools (discussed in section 13) have assisted in
controlling, recording, and cataloging documents for the des-gn process from the conception of
system needs and possibilities through initial requirements specification to final release.
Continuing review of the impleTientation and use of new subsystems is also recorded in the
Journal. 8t: d

Implementation and Debugging ör!i

Languages 8 31 a

Introduction HDU

ARC currently makes use of several languages created at the Center: the Tree-Meta
compiler-compiler system, which is used to generate compilers and has been used to
bootstrap compilers onto different computers; the L10 programming langurge, which is used
to write NLS programs; and ML, which is used to describe user intcractic/'s with NLS.

In addition, Tree-Meta has been used to develop an interpreter for the Output Processor
directive language.

Tree Meta 8t1a

i'ree Meta is a metacompiler system for context-free languages developed at ARC. The
parsing statements of the metalanguage resemble Backus-Naur Form with embedded
tree-building directives. Unparsing rules include extensive tree-scanning and
code-generation constructions. All compilers produced by the system are single-pass
compilers that produce loadable binary files.

A metacompiler, in the most general sense of the term, is a program xhvt reads a
metalanguage progi^m as input and translates that program into a set J" instructions. If
the input program is a complete description of a formal language, the result of the
translation is a compiler for the language.

Tree Meta is built to deal with a specific set of languages and an even more specific set of
users. There is no attempt to design universal languages, or machine-independent
languages, or to achieve any of the other goals of many compiler-compiler systems.

A version of Tree Meta was discussed in an ap^ndix to the Rome Report of April 1968
[4]. Since that time, the syntax has been expanded and the system made more flexible, A

new Tree-Meta report [3] includes a formal description of the Tree Meta language.

Knowledge Workshop Development - Reported as of 7/74 page 155

SRI ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
18 Software Engincering

LIO lib3.3

NLS on the FDP 10 is written in the LIO programming language, an ALGOL-like language
that has some high-level special-purpose features for string analysis and manipulation, and
for interacting with Nl S users.

Also among the constructs in LIO are flexible ^ASE statements and several types of
looping facilities which make possible the creation of code essentially free of GOTO
elements and hence more immediately understood and controlled. A SIGNAL creation and
trapping facility permits dean error recovery. Coupled with the special debugging tools
described below, the lang jage offers extraordinary power for producing clearly structured
code.

The formal description of the LIO language may be found in [9]. A less formal discussion
oriented toward novice user programmers may be found in [10].

CML IB»}.4

CML is a language developed at ARC for the specification of user interactions with NLS.
For a more detailed description of CML, sec section 9.

System Catalog and Tools for Moving within the Source Code B-'-

We use the NLS Jump and Jump Link commands :r. conjunction with level clipping and
line truncation to move around within source files *u exzinine various pieces of code. An
automatically generated systjm catalog. SYSGD, is a useful aid in moving through code to
find particular procedures. Its use is also illustrated. s '

The first series of illustrations (Figu es 1 through 4) shows online examination of a typical
LIO source code file. Noie the use of level truncation and commenting to zero in on the
desired procedure. etttr

The second set of photographs (Figures 1A through ID) demonstrates another use of NLS
structure in code to clarify tne fairly complex structure of some nested IF statements. asm

page 156 Knowledge Workshop Development - Reported «s of 7/74

SRI ARC 30 JAN 7b 5 34PM 22133

IV Workshop Foundation
IS Software Engincering

• '. ■ '

' , * .* , •' S • . ' . " ''-■•■ »- »■•«•' ie-Ak'f*vj !< 'j
- ■> . M * . * ^ \

• h tw<»

«1 HS- JOtXtC .*Li,?l!. 'I-^L.-Tj'0> OJ fl9L . •
Ll lOtXfC '*l. itt 'c «f»£L-MS»:0IXU 1* . " ' . I

* 1 trror hftrd'.trü,I ''. ' .'..■. , J

| .C«c'ftr«t ic-t / 1 ! r^-cee ^p-j'd be rcved 4c «pfrcpri »•« flJo

r
.null'fl'«. *i'e '-pee4 . ard Ifltl«! f l *€ rout iritt., . 1
fl '« irit5«!(2«trcr ".-..l' _.■ #

* i .•yrlwi *>'« r/O irterjfcctlO'' 'J^v«, B#£N/CtpStJS»< ih.TF1, 1
.Putput M'^VJCCCH rcvrti^e« ...i ■' ■

r. 40.
'.updtltf •■*{' t tuptoA fOul'lr« ...1 %.' _ '

" Vt^uvt^bl« int i «'i »«t tc; ulihty p'Co«4jrt» ...I
Ccrr^tpc^de^o« Fr»*-ut'(Ut y prccadurt»^,' l
p«r-lt*i cjOpy «rd 'eck 1^9 jt U It jr >-ov»lri«». -.1- , ,, r^

•oo«ta wrt l!It y routir«». ,' . .1
t* m(»o«l l^aeu« i/l l ' it y rout tn«* 1 '."'

'Unit* Of lO«K«0 *. .
•

Figure 1. Typical source code file-truncated view. The tile, IOEXEC, handles NLS's
i terfacc with the TENEX file system. This view shows top-level statements which are L10
comments; hidden at lower levels is code which implements the functions described. xitm

t iwt» . jumc to M «^ , •■

» . *

> / * ,
I ,. fi'lt iHutW inrt ic^ I \ ■' 4 ^ i-if-t

* ! rMfi Iv W0CttVi»E ^ :ti .. *»' ! ?e ' X ̂ ; r.; t («' t j« ^tjider ar.d' ctt4. t w '
. '99**1':. MccctwÄi i :*i4

t l rp 'l p

1. ' . .. ■

' ■ ... * ' .
«

- # *
4 «

V - _i-_
* / • ■ *

Figure 2. The same file af»"«" jumping to a particular auction branch and opening one
more level. Visible are th t'rsj hues of prtKcdurcs vvnii simple descriptive comments
extractable by a program which prMuces the system catalog, SYSGD. ISöJ»!

Knowledge Workshop Devetopnvni Reported a^ of 7--74 page 157

—^ —

,_;!!. J^m; i -

SRI ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
18 Software Engineering

jO-AUf-M M'l

*«r l«e« r^«r«c-f «r

ntfU) PMCctwiE I I'-i*m,(i» TMe-- irj« ia!:c« htadcr «r.d ert«t«

I .-..j

'{""i » rr-i I-

Figure 3. The procedure INTFIL with one more level di»played. Hidden beneath the
comments is the code described. u.,.

IC-AUO-'I '« '»

•/•r >-• "■ •»r-»»-» ^r

« i

—»* ' , ro-' f; 6f • • • , * »,
').--, . ., :,

-'',•".-.-■• :

• ' ' . .
■ '. ' ''■■'

•' • '

- ' ' ' • ''','■

t • to'-,

. pr f , r -_
*■".

-.

I r • .: T ' '".' • '
•.*r^ft- - Cr -.! ^ ' ^ • c

'.' r -..r r l •" Vt* 1 .. r ' U r » 1-

fl/f r* »**, 'r • ' *••".".
t te* - *** C ' Cr \ (^i r r* w ^>* -t

♦,-•-•* 1 Icut; ir-» 1

- ■< ^ T 'T^irr v-i -re»« f

• I ♦*.* »vr» #- *•*-

i "9 <■•«;(■ • f! gl'

Figure 4 The beginnit^ of the INTFIL pnKedure with all levels visible.

page 158 Knowledge Workshop Deveiopment - Reported as of 7/^4

. .. . - TT—rrf n i » . i^.. ■ If-' ' ^t^L^»^ 1

ii ■■-Hfflt'.Mi.^-^^

3RI ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
18 Software Engineering

jO-ALt'l t! «J

IF fj."np»ri OR ;rew' ^ ANL i'i■^ftn
,«, rwtx

*C Tl-'^M pit). I«"- e"«6tef- jpJs'.edl ^ - ...
■ tuo • ■ . " •..!•.

tijut.fütl 'MOtttLÄt i dee» OwrtDut r \'9 zemvi i'
(oi^t.fnw. I e4'-;^^ cctai-i-g -a-« r1' lhf Mi to bt outpirt to I

LOCAL n/r; r'r,, r*|j'i c*
LOCAL nur port» tpi
LOCAL Sr^lN« rf I rarri; -CO?
H.t^ ftf 1 . cf 1. oui f^a^.''
lef l' •• f lfrt«*»cofr) i
ir of). Uft»-! rntN --

1^ KOT «njfn • I9«- ,
• ItNAL- (of I !«rr. | tttl

i^rtfntm. lnl»«)»t. jt)eef. Illti) PHCK

Figure 1A. A truncated view of a nested IF statement.

je-Aüt-Ti > •♦

ln»»r-l Cb«ir%c7t «r

IF fl fljxll AN^ fl. »long VHIU

Vf *'.Vt>T* 0» (-,«**• 5 ANt ifilram«! rxtN ^
8C8> ••'■_'• - ^
If ,"e*'*'9 r>^N Icter re* vertier wi« M.r^^cc«»ir
USE l-'cec »'•d '-erre'- c'd ve'-eic C'^^^^' "•-"■■■

I- I -^e*. rar-; 9 -rC| "-eade^ sddr««» i\
I '.^ dc ^^e -i'g bleckt I \

J *irs" y%dc '^p w€«dr- !
I etc »►■€ ^^.re '1 e wi*> read «c:iti I

• tht
tl$C ^c^tcl' tC •«« tf.it it lecked wl^cv*. » ptrt !•' ocpjl

r^er« li ten« d^rg.r ir thi«,' if Ih« Ml« 4« b«tr»9
•ooet»«d by <h» aam« u»«'' »t •Acrtt,i«r o«r»o'!« v« w>« j^irg
to (jnlcok th« fl I« cvt fro» \j»\d»r hi«.

Figure IB. The preceding code with one more level shown

Know'edge Workshop Development - Reported as of 7/74 page '59

- ~" 1 "1 ■" 11 -1 '1 -r.^-.,.-. i

SRI ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
18 Software Engineering

Figure IC. Yet another level visible.

' til 4t

i

IhMrt Ch%r«et»r
t

- BE?:',

of*:'. **

:«■ ■-: r«.» '- . j^ '-

C l ' ' f\-f t' er .-• / 'l

"

|0-ALI-'I '5 01

•<--- •■■«♦'..,

■etu

Figure ID. All levels visible H^.-M

In addition, we have a user program that will generate a cross reference file, SYSGD (See
Figures 5 ihrough 7, following) This file can be used in conjunction with the nc < NLS
command. Jump Name External, to locale, online, procedures held in separate sourc< flics.

'. • D 3 fc .

page IM) Knowledge Workshop Development - Reported as erf 7/74

w - r T T - - -^--^ - - -

SRI ARC 30 JAN /b b 34PM 22133

IV Workshop Fcvindation
IH Software Engineering

The command "Jump to Name External" may be used to jump to a named statement not
within the current file. When this command is executed, a default system catalog file
(snecified in the user profile, described in section [yyy]). is searched for a statement of
that j.ame. An NLS link points to the file in which the target resides. SYSGD is typical
of such system catilogs. While reading code online, a programmer may issue the Jun.n to
Name External command, point at a word (perhaps a procedure call) on his screen, aj.1
have the appropriate target displayed.

ja-Aut-n 14.n

MC^IM« Ch«r«ot«r

,rS0D.NLS;22.' 26-JUL-73 08;56 KDH
(«D (nle.utllty.^ ,
{&) tnle.utllty.) • ' „
(53) (nls.utllty.)
(ft3ddrec) (nie, coi ert. eJddrec) 7C

.(»4) (nle.Lrtllty,)
{«bort) (nle.oiuxcod.ebort) JD
(ftbsl^) (nle.conet.),
(dcctyp) (nie. loexecv)
(eccumi) {nle,nddt,) '
(»oovdl.») (nla.colo. «ccvel») 5E
(•d«do») (nl».utl Ity.)
(•dttdf) (n'».trt Ut v^
(•de<fil> (nttVutljJPy.r ,— -
(•dslrx) (nl».utl/ty.)
«•d»lry) (nlt.'ut/lty.)
(•d«»«q5 (nit.t^/lty,)

-^)

Figure 5, A truncated view of the SYSGD file.

jump t« L Ink
f

Jt-AUff-T| 14.fl

tf**rf>Q) (nit. filirp.ntwmg) ici
ff.UtfM»
find root» for « nt« ring ilxrwnt «nd •lioo«t« l.l. Ctlltd wltfi flit
mnbtr of flit rfifpf want tht ntw tltmtnt. Rttuffli

Figure t>. A typical SYSClD citation The cor«meii« w.is extracted automatically from the
led procedure -M;

Knowledge Workshop Devekipmenl Reported .v- of '74 page Iftl

-^^-—^ ^" - ^=^^ B^iTTn^TT^ -ir -- -ri—

..hfl ARC 30 lAf^. 76 5 34PM 22133

IV Workshop Foundation
18 Software Engineering

Figure 7. Examining SYSGD offline.

Tools for Creating and Testing New System Features «t^

A :v»mber of tools within the Knowledge Workshop aid in the creation and testing of new
NLS features. In addition to the standard NFS editor, several commands and subsystems
are specifically aimed at the meds of programmers. «: «

Copies of procedures may be made, edited, compiled and instituted into the running system
or substituted for existing parts of the nipnin» system without disturbing other users. (This
may be thought of as being increment..! compilation at a procedural level.)

CtHirdination of modifications to NFS by the NFS programmers is eased through this user
programming system. Only after new or changed procedures have beer tested are they
placed into the actual system code. A tool «or recording changed system files is associated
with a compiler driver The names of source code files to be compiled are -heed into a
branch in this special system file. TA3K.S. When desired by any of ihe NFS programmers,
the accumulated file list may be driven by another system to compile the files Records of

page 162 KnowlcdfC Workshop Dcvclopmcni - Reported as of 7/74

-

SRI ARC JU JAN ?b b J IPM ^V. ^J

IV Workshop Foundation
IK Software Engineering

successful and unsuccessful compilations are kept in this file along with records of •• ystem
loads. This Utility System is also used for printing out source code listings.

This tool thus permits compilations and loads of a system 10 be done at more convenient
times and provides a record of recently made system changes along with the identifiers of
the programmers who made them.

Source Level Debugging -:

By making minor changes to the TEN EX Dynamic Debugging Technique System. DDT.
and to the ARC L10 programming language compiler, and b, providing a fairly simple
debugging submode accessible through NLS, NLS-DDF, ARC software engineers have
provided them .elves with a primitive but effective source level debugging and (procedural
level) increme ital compilation system. ■ ('

Documentation of the commands in the system may be found in [5].

The NLS-DDT system provides an easier way co examine individual cells and 1.10 data
structures, such as records, fields, strings, and call stack frames, than is available in the
current TENEX DDT.

Procedures that are compiled in the User Program submode may replace procedures in a
running system during a debugging session without the necessity of either patching in
machine language code, as in the TENEX DDT. or loading an entirely new system, a slow
process for a large, multifile program such as NLS. Symbol definition is resolved with the
rest of the running code. Such procedures may also be inserted into the program •«• ' =

The break-pointing features of TENEX DDT are provided as well as a conditional
break-pointing capability ^

The command language is less obscure thun that of TENEX-DDT and is more consistent
with otKr commands in the NLS environment.

DtKTumentation -*'~

Several programmers continually modify the 150.000 computer words of NLS code. In such a
large system it is essential that code be clearly documented to permit anyone to fix bugs and
make additions to the system as flexibly and easily as possibie. A well-documented source
code, viewed using the linking and level-clipping features of NLS. provides an immediate
overview of the system and an important tool to the augmented software engineer ■•»'

Thus, in the development of a software engineering system design discipline, standards and
methods for documentation must exist. *'-•

Standards for documentation and coding were proposed in [6]. These rules, wh'-h
describe indentation and commenting suggestion-, for all common feature., in the languages
used at ARC. have been in effect for some time now. Used in conjunction with the level

Knowledge Workshop Development •■ Reported as cf 7/74 page 163

SR! ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
18 Software Engineering

clipping and line-truncation features of NLS as well as various special user programs for
generating system cross-references, they have proven to be valuable for learning and
maintaining the system. They also provide handles for the use of automatic documentation
extraction programs. :st»o

Illustrations of typical commented LIO procedures are seer, in Figures 8 and 9, following.

page IM Knowledge Workshop Devclopmenl -- Reported as of 7/74

r rt-frn' i ii ■■

■ >■■'■' ■

SRI ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
IS Software Engineering

*ii *i« \ t> je-AL«-»! i«.;-

» . ■

'.htonSitr •-

f t«tfi:' p»octcu«t
■ tftt:«. • rhe beider r

Mnl'tiellM fi!

. ff* Siu* .t**CCK^

e he«d«r ard core psja tt«tut
nur^er le Pttfised i« IfVltle'lItd

.. ty *Kt roij* ir« A ir'e efr* (c enH ,, th« ifftpktr

tebl« i.« Bc* 4c emtr* r. »H th« COPPS H core-pnqe-r*. «tu« --.«b'c-
• e"4. ri«e Der'.^i'-;-^ * (tKi« 'i e U-1-^ er *har, t^€ ^etier : ^e e«*. t c

:ri'</^tt.e *.h-a^ 'c ^«'i* •s ^re caded. I

< V; IT.C I S.5 ' « hurtßf c* '; ' e b|i.r? inrtierrz'td y N

i ----: ..-: t /
UOCAC i'-de*. ^e«: er. tq-lr^ex, 'fc '.. b'ock. •

'"EF #fc, ' . * / «
t(r.itk«'i2t *ii« hetfder by updttlfig durrny fiiehMd •^ .
»r (i copying tKar». ♦ r *>• <-•«: *.i 1 • htederi /

•^ »vwd • i r .
• ■ . /"■

n emid ' ' • ' t i '■ 7 ^
f^wndll - •■'> i

■ • / ■ f"
' 1 *i!« own«»- tu»«r numbar") 1 -■ . / -. |

■JStf gjmfi .' ' .. /• ■ ■

funo • r?i» • >
f mit • Iwt im • • Jdont rti

/' ' ' ; -. . ,

Figure 8. The beginning cfa typical Llü procedure: SETFIL.

BA%t

• v-fP

... - ' -. ^ •• '
.■•

""AVl t.-GP'-'l ••
< j '• •

'CET

■»

1

i %

^

f

■ - ' ," 'z ."* *

■J^ - LSCi' r-.>

i

. *

Figure 9. Part of the CML code Inr the NI S inseri" command from Jhe file
cNLS> SYNTAX :^^-.

Knowledge Workshop Devdopincnl -■ Reported .IN of 7/?4 page 165

^^--^'fc- TT tT TT ^ ,- -

SRI ARC 30 JAN 76 b 34PM 22133

IV Workshop Foundation
18 Software Engineering

Analysis ^s

The designers of a continually evolving system must be able to measure the effectiveness of
modifications introduced into the whole system. They must be able to quantitatively and
qualitatively measure the effect of a change on the command use of individual users and on the
whole system response. Analyses of these measurements indicate the need for modification in
training techniques and for further changes. •*?'■j

NLS can measure its own activity in various ways. Each of these measurement techniques was
added to NLS at different times and in response to different questions the system programmers
were asking about system activity. * —

For a detailed discussion of the measurement and analysis tools available at ARC, see Section
20, System Measurement Tools. ^

POTENTIAL TRANSFER OF KNOWLEDGE TO THE GENERAL SOFTWARE
DEVELOPMENT COMMUNITY

In a discussion of the need for a National Software Works [7], Balzyr, Cheatham. Crocker, and
Warshall speculate on the reasons for the gap between the research and production communities:

"First, organizations tend to optimize over the short run, ^nd hence, innovative tool
development has been sacrificed to the need to build systems as quickly as possible. - -

"Second, users have been limited to using only those tools that were both available on the
machine they were using and for which adequate information existed." * ■■

The tools and techniques that we have developed, and that we use in our own software work, are
by no means so special purpose that they are inapplicable to large-scale software producers. ARC
has been involved in the general problem of technology transfer with the entire collection of tools
in its Knowledge Workshop (5) [8], and the collaborative development and transfer of its
software engineering tools to a community distributed over the ARPA Network has already
begun to a limited extent. B.

REFERENCES

[1] (18a2) Jack Goldberg (Editor). Proceedings of the Tri-Service Symposium on the High
Cost of Software. Held in Monterey, California, 17 to 19 September, 1973. Stanford
Research Institute, Menlo Park, California 94025. <XDOC - 24502,) ■**•

[2] (I8ala) Barry W. Boehm. The High Cost of Software. Keynote Address in Proceedings of
the Tri-Service Symposiim on the High Cost of Software. Jack Goldberg (Editor).
Held in Monterey, California, 17 to 19 September. 1973. Stanford Research Instiivite.
Menlo Park. California, 94025. (XDOC--24502,)

page 166 Knowledge Workshop Developtnenl -- Reported as of 7/74

i ■ - -mmm -

- ----■.:. - ,-,,

SKI ARC 30 JAN 76 D 34PM 22133

IV Workshop Foundation
18 Software Engineering

[3] (18b3a2c) Diane S. Kaye. Experimental NLS Bug-reporting Mechanism. Auj;menfation
Research Center, Stanford Research Institute, Menlo Paik, California 94025.
27-JUN-72. (10869,)

[4] ri8b3a2c) Douglas C. Engelbart, William K. English, J. F. Rulifson. Development of a
Multidisplay, lime-Shared Computer Facility and Computer-Augmented
Management-System Research. Augmentation Research Center, Stanford Research
Institute, Menlo Park, California 94025. APR-68. (9697,) ^

[5] (18b3dla) Charles F. Dornbush. NDDT Symbolic Debugger User's Guide Augmentation
Research Center, Stanford Research Institute, Menlo Park, California 94025.
7-JAN-73. (13716,)

[6] (18b4bl) Harvey G. Lehtman, Kenneth E. (Ken) Victor. Proposed MLS Code Format and
Documentation Standards. Augmentation Research Center, Stanford Research
In.titute, Menlo Park, California 94025. 13-APR-73. (15934,)

[7] (18cU Robert Balzer (ÜSC-ISI), T. E. Cheatham (HARV-10), Stephen Crocker
lARPA-IPT), Stephen Warshall (MCA). Design of a National Software Works.
USC/Information Sciences Institute, Marina del Rey, California. ISI-RR-73-16.
NOV-73. (19208.)

[8] (18c2) Douglas C. Engelbart, Richard W. Watson, James C. Norton. The Augmented
Knowledge Workshop. In AFIPS Proceedings, Vol 42, 1973 National Computer
Conference, pp. 9-21, 1973. (14724.)

[9] (I8b3a3bl) SRI-ARC. L10 Useis' Guide. Augmentation Research Center, Stanford Research
Insti-Jte, Menlo Park, California 94025. 6-NOV-74. (24426.)

[10] (18b3a3bl) William H. Paxton. L10 Documer.laiion. Augmentation Research Center.
Stanford Research Institute. Menlo Park. California 94025. 5-DEC-70. (7052.)

Knowledge Workshop Devcl-nmenl -- Rcporlcd as pi' 7/74 pugc ih~

*.- -Tt" -- - -nfr

- \nt\nm«mf.i.iutiST*

SRI ARC 30 JAN 76 b 34PM 22133

TEN EX Development
(bv William R Ferguson Donald C Wallace, and Kenneth E Victor)

INTRODUCTION

The work that has gone on at ARC on NLS dmj other subsystems is ail supported on a FDP-10.
running the TENEX operating system. This operating system was originally written at BBN, and
we receive updates of their version as they make changes. Twice during the past funding period
we have received a major update, called a new release. Some of our TENEX work has been lo
incorporate these new releases into our monitor. In addition, we have added a number of
important features to TENEX, both to increase the efficiency for our particular environment, and
to add needed features that allow our major subsystem (NLS) work to continue. ^

One of ARC's most important contributions to TENEX was the development of BSYS (Backup
System). Largely the creation of Don Wallace, BSYS was turned over to BBN, who released it in
a set of separate procedures as a file system Utility for all standard TENEX sites

BrYS was designed to provide better dump and archive procedures, and in general give TENEX a
better and more sophisticated tape database backup system.

Some of its most helpful features include a global verify of the system; a reasonably global trim
function after a s} stem dump; a mapping function which considerably aids problem spotting
and fixing, both in hardware and software; and an octal dump, which further aids operators in
discovering and clearing up trouble spots. ^ •

The TENEX ARCHIVE function as it exists today came out of the work done in developing
BSYS.

Further, we have brought up two new EXECs during this period. The EXEC is the user
interface program to TENEX. When the user first types a control-C to gain the attention of the
system, she is in faet talking to the EXEC. In our environment, we have adopted a philosophy
about the EXEC similar to that of TENEX, i.e. we incorporate new BT1N releases as they become
available, and we maintain an ongoing development of features that are necessary or useful to our
particular group.

The final major area of work in the TENEX arena has been the development of a Group
Allocation system (16). We (like many other TENEXs) found that we were allowing so many
users on the system that the computer became overloaded, with a resultant decrease in service to
everyone. To solve this problem, we developed a system that allowed a rational algorithm for
users accessing the system. Only a certain number of users are allowed to be logged in at any
given time, and this number is further divided into groups, with the membership of each group
decided by management. Thus this system allows management to accurately determine who has
access to the machine ;»t any given time. We have found this very helpful in bringing the total

Knowledge Workshop Dcvelo^meiU - Reported as of 7/74 page 16^

Preceding page blank

SMI AK(. 30 JAN 7b 5 34PM 22 1 33

IV Workshop Foundation
1^ Tenex Development

load on the system down to a level at which each user receives sufficient response speeJ to have a
productive working environment. a^

TENEX MONITOR MAINTENANCE AND DEVELOPMENT

Proems of Bringing Up TENEX 1.29 ; ^

One of the major jobs in TENEX maintenance is incorporation of our modifications to the
monitor into a new BBN release. One of the firs! activities during the past contract period
was to get TENEX version 1.29 running. ^

During the period we were running the previous moi.itor, version 1.28, we found it necessary
to build many new features into TENEX. When 1.29 was released we found ourselves faced
with the formidable task of isolating all our change ' including them in a new monitor.
The lessons we learned during the process were very impon~ ones that have changed the
style of all our subsequent TENEX work. ^ :

A bit of background is essential to understand the problems that faced us in 1.29. The
TENEX monitor is divided into aKi.'t 45 different packages. For instance, the routines for
scheduling are in SCHED.MA ?, many of »he JSYSes (calls on the TENEX operating system)
in JSYS.MAC, aru the teletype routir.^s in TTYSRV.MAC. This makes modifications of
TENEX relatively simple, as most of the f r.-kages are somewhat autonomous, accomplishing
one logical function. Most changes can he accomplished by modifying one or two of these
modules. •■-*■■

What we had done in TENEX 1.28 was to simply put all our changes directly into each
module. At the time, this seemed the most logical way to do things. But when 1.29 came
along we found it very difficult to isolate the changes we had put into 1.28 versus the changes
that BBN had put into 1.28 in making 1 2.9. . r ^

Because of the problems we saw in the way we had done 1.28, we decided to include our
modifications to 1.29 in a different manner. First, we decided that we would get BBN to
include as many of our changes as possible in their version of TENEX. Then, the next release
of TENEX (version 1.30) would already have accomplished much of the work that we would
need to do. Second, we decided to change the organization of our changes into a more
modular design. Specifially, we defined several ne^v modules for the TENEX monitor. They
were SRICOD, MONSRI, and TTYARC, containing respectively a) all the JSYSes written
and supported at ARC, b) all our modifica'.ions to the core page management routine
(PAGEM) and the scheduler (SCHED), and c) all our changes to th3 teletype routines
(TTYSRV). Thus when we received a new monitor, there would be the easier process of
including our modules, rather than making major edits to all the BBN modules. ^ '

To accomplish the first part of our objective (getting some of our modifications into BBN
TENEX). Ken Victor and Don Wallace began a dialog with the BBN personnel. First a list
of the modifications to be included was agreed upon. Second, a detailed description of the
implementation of these changes was discussed. And finally. Mssrs. Victor and Wallace

page 170 Knowledge Workshop Dcvclopmenl - Reported as of 7/74

— -—rrr-ir-'---'•--

■

SKI ftR(iO JAN ?b b 34PM 221 JJ

IV Workshop Foundation
1^ Tcnc.x Dcvclopüjcii!

traveled to BBN in Boston to work on the actual implementation. All parties involved iclt
that this three-step process was quite useful and efficient. BBN received some features that
they also needed without the neccessity ol much programming time, and we were saved the
problem of always having to incorporate these changes when a new BBN release was made.

After final discussion and implementaion. BBN had accepted the following additions from us

h Not allowing users to log into the system if the file system is in a disorganized state.
Only system programmers can log in to fix the problem.

"M Several JSYSes that allow setting and reading some user-specific information cells.

3) Routines that determine whether a user has write access to a file before he actually
begins editing that file, and thereby saves the user futile efforts to edit that file.

4) And, a group of routines that allow setting, testing, and resetting a system-wide global
Hag.

The second part of the process was also fairly involved. It was neccessary to go through all
the code for 1.28 and attempt »o isolate all our changes. These changes were then
consolidated into the three modules mentioned above, MONSRI, SRICOD, and TTYARC.
However, ever, wiih this goal of separation and consolidation in mind, we were still forced to
make a number of edits to some of the other modules. But the extent of the changes within
the BBN •, odule> was greatly decreased.

Though the above process was time-consuming, as it es mtially required a line-by-line analysis
of the monitor (approximately 50,000 lines of code), it was valuable when later versions of the
monitor were released. We also decided that in the future we would attempt to do all our
modifications to TENEX in one of the above Manners, either getting BBN to support them, or
including them in our separate packages.

Important Changes in TENEX 1.29 Worthy of Further Discussion

After the initial process of incorporating all our 1.2S c.ianges into 1.2^ and debugging 1.2^. we
embarked upon two major modifications to TENc>f One of these was a major rewrite of the
BBN scheduler to make it faster and more efficient in our environment. The second was a
rewrite of the BBN disk driver to allow us to use two disk controllers.

The scheduler changes were very important to our goal of supp!; 'ng rear /iiably fast computer
service to a growing number of users. We found that on out system we were spending
approximately 25 to 309? of the total CPU time in scheduler operations. This was because the
BBN scheduler had been designed for a much different subsystem-user environment than the
one ;• ARC. In gc leral the BBN scheduler had been written a» an all-purpose scheduler. It
was directed at handling a mix of subsystems that range from large to small working sets (a
working set is the number of pages a user needs in core to run his program), and vary from
very interactive to basically batch type programs. This was no* acceptable at our site

KiUTwIedge Workshop Devdopnicnt - Reported as of 7/74 page 171

SHi ARC 30 JAN 76 TJ 34PM 221 33

IV Workshop Foundation
19 Tencx Development

Al ARC, we run only one subsystem extensively, and that i *LS. NLS ha* a very large
working set, and is highly interactive. Due to these characteristics, the BBN scheduler was
simply very inefficient for the type of usage at our site. To alleviate this problem, Don
Andrews began looking closely at the wy the BBN scheduler worked. —

Don na'J' several fundamental changes •• the d ign of the scheduler. The two areas in
which changes were made were the wi. . .ist manager and the balance-set manager. The
wait-list is a list of processes that are curre 'y inactive as they are dependent upon the
completion of something else. Reasons for a process being on the wait-list are such things as
awaiting TTY input, awaiting the passage of some time interval, and «waiting a state change in
some other process It was found that the wait-list was being polled too frequently, with the
result that many processes were being examined, only to find that the conditions for running
had still not been satisfied. Thus the scheduler was spending a great deal of time simply
decijing that an inactive process was still inactive. • -•

The other area of inefficiency was in the balance-set manager. When conditions had changed
such that a process was runnabk, the scheduler used a very elaborate algorithm to decide the
priority of that process relative to all other runnable proce* ,es. This algorithm was taking
almost as much time to determine which process to run as ■ -as available to run the process.

ThK fixes for these problems were to 1) reduce the frequency of scanning the wait list, and
reduce the complexity of the balance-set manarer. The combination of these changes resul i
in reducing our system's scheduler overheaü from 25 to 30^ down to a more livable 12 to
15^.

(NOTE; Our particular scheduler changes were not directly incorporated into the BBN
mon^or However, Don Allen has independently made many of the same changes to the BBN
scheduler. This scheduler, which will be released in version 1.32, includes these two major
changes, and '.as a similar increase in efficiency)

The other chang.* included in the scheduler was ihe addition of a large number of metes,
which could be queried to ascertain system eharacferistics. These meters are sampled and
analyzed by the subsytem SUPERWATCH. This subsystem is discussed in the Section 20.
The inclusion of these meters and use of SUPERWATCH have allowed us to accurately
monitor our system's performance, and make neccessary adjustments to improve efficiency.

The other area in which we made a major modification to version 1.2^ was m the disk pack
driver. The BBN module has capabüty for handling one controller, which in turn can sc .vice
up to eight disk drives. To increase the speed of di»k operations on our system, we chose to
add a sec, ■ uroller. with a resultant configuration of a total of six disk drives, three on
one controlle» :e on the second ^

After hardware installation, it was necessary for us to rewrite the diiver so that it could deal
with more than one controller We did this in as general a manner as possible, so that if we
later expanded tc three or more controllers (up »o a limit of eight) all we need to do is change
one parameter ';

page 172 Knowlcdgr Workshop Development - Reported as of 7/

sw» A(v jo IAN '> ' Mff.1 . ;■" :

IV Workshop Foundiition
|M IVtit'.x Dcvcloniiicnl

We lia\c found that the addition of the second controller and corollary monitor changes have
greatly increased the speed of disk access. Using only one controller, it took an average of 120
milliseconds to get one page off the disk. With the two controller system, this time has been
reduced to 40 milliseconds. The increase in speed is due to the fact that one controller can be
preparing for a disk operation while 'he t-'her controller is performing an operation. The
speed-up has been very noticeable during periods when our drum was down, and we u c
forced to swap off the disks. Using two controllers has made such a disk-only system change
from virtually useless to an adequate back-up configuration.

Process of Bringing Up TENEX 1.31

After completing the scheduler and disk driver modifications in 1.2^, the TENEX front was
fairly quiet, until TENEX !.J1 was released. The reason that we will not discuss version 1.30
is that it was never released: the distribution of that version was delayed until BHN decided to
simply ignore distribution ci that version, and await completion of other projects. When the
monitor was finally released, it was named TENEX 1.31.

Bringing up version 1.31 was less involved than for 1.29. Due to the work that had been put
into organizing our changes, putting our modifications into 1.31 was much less laborious. The
primary focus of work in getting 1.31 running was the following. Previously, TENEX had
bfen written in a mixture of languages. Some modules were written in MACRO and others
were written in FAIL. With the advent of 1.31, all modules were in MACRO This w.is
nicer in that it s mplified assembling a new monitOi.

However, this necessitated rewriting all of our changes that had been in FAIL. This v JS not
too difTlcult, as the format of FAIL and MACRO are relatively similar So. bringing ap 1.31
was fairly straightforward

Since rummg 1.31, we have continued our policy of attempting to get BBN to maintain our
modifications, or find another way to accomplish the end result ihrough changes to the EXEC
or user programs

The major emphasis m our discussion with BBN has been to get them to incorporate our Big
Character Input routines. We have modified our TTVSRV ,m our module TTVARC) to
handle a special kind of input. When working in DNLS, some of the characters that ihe user
t:?pes are sent to the computer with coordinate data Thus, if the user types a control-D
{Command Accept for NLS) not only does the computer receive a control-D. but also the X
and Y coordinates of a pointer on the screen at the instant the Control-D was typed This is
used in our environment for the two-dimensional editing which DNLS allows. Al the time of
this report, we are engaged in specifying such an input scheme for the BBN monitor. We
currently expect that this feature will be included in version 1.33. which will be released in
Ja-iuarv. 1975.

Kmmlcdgc Workshop Devdnpmenl ■ Reported .is of 7/74 pjgc 173

SRI ARC 30 JAN 76 b 34PM 22133

IV Workshop Foundation
1^ Tcncx Development

Summary of the ARC Modifieations to TENEX ^ •

As the reader may have already inferred, over the years we have made many ehanges to
TENEX, and the major work required at release time is to ineorporale these ehanges into the
new monitor. We would like to now summarize the diffeienees between our version of
TENEX and that run by BBN. The changes that we specifically made during this contract
period have been explained in depth, and this summary will be a list of them in addition to all
the changes made prior to this contract.

We currently run the following changes (listed in order of the module where they reside): • ■■-

MAJOR

DSKPAK MAC

1) This is the change discussed >ove, which allowed us to run two disk controllers for an
increase in speed.

2) We also modified the manner in which pages are assigned on the disk packs. In the
BBN monitor, their assignmnt sequence requires that all of the swapping is done on one
pack exclusively. This is very slow. W;e changed the algorithm such that swapping is
spread over all the packs. This has helped to make the three-fold increase in swapping
speed that our new di k pack driver delivers.

DSPLAY.NLS (Local Module): We have written about 20 JSYSes that do the
manipulation of our DNLS display data structures. These JSYSes are used in conjunction
with our 32K of external Ampex memory When v»c move to a new display system,
utilizing line-processors, these JSYSes will be diminaici. Iliey have already been removed
from the Office-1 monitor.

LINF.PR MAC: Rather than running a DEC printer, we purchased a Data Products
Printer, as the latter gives us better a type font. To run this printer, we had to write a new
driver, with different character codes.

SCHEDMAC:

1) As discussed, we changed the «ait-list manager and balance-set manager to get an
increase in speed and efficiency.

2) We also added meters, which are useo in conjunction with Sr PER WATCH, to
accu. v measure the functioning of the system.

SRICOD.ARC (Local module): These JSYSes include a number of features, such as the
following which we use in our environment

I) Capability of having the monitor write out all error messages in a fi'e. » i addition to the
BBN standard of printing them on the logging teletype.

page 174 Knowledge Workshop Development - eported as of 7/74

Mi rr ,n,.

sR! AW HO JAN fb *) 34PM ?2133

IV Workshop Foundation
I1) Iciicx Development

2) Ability for a user to read monitor cells without the necessity of entering monitor DDT

3) Routines essential to allow a user to change his login password, without having to
request this of systems personnel

4) Routines to initialize and manipulate our 32K of external Ampex memory (used for NLS
display areas).

5) Routines to start and read our Real-Time Clock: We use this to set system time, rather
than requiring the operator to type-in the time at system start-up.

TTYSRV.MAC: This is the input capability discussed above which we use to inpu
coordinate data along with a typed character As mentioned, we are in negotiation with
BBN to include this in standard TENEX.

MINOR

PAGEM.MAC: In order to I.andle our 32K of external Ampex memory, we had to
slightly modify this moHuie so that TENEX would . ot try to swap out the display
databases.

SWPMON.MAC:

1) We have purchased a Rcal-Time Clock, and there are routines in this module to start
and read it. We set the system time from this clock, rather than by operator type-in

2) In order to properly program our local displays, we have changed the terminal
initialization procedure. Depending upon line number, we either set up standard BBN
terminal defaults, or special defaults for our displays.

3) We also set up different job initialization parameters, which include user idents.

EXEC MAINTENANCE AND DEVELOPMENT

Bringing up EXEC 1.50

Very much like TENEX, we have undertaken the following procedure with regard to the
EXEC. About once a year, BBN will release a new EXEC, with all the changes and
modifications that have been made in the previous year. Our job at this time is to im ^rporate
all our EXEC changes into the new version. After this major task has been accomplished, we
undertake an ongoing program of adding needed features to the EXEC The following is the
story of this process during the contract period.

EXEC i.50 was released early in the contract period. Ken Victor was responsible for getting
this version of the EXEC running. He had little trouble in bringing it up, as we had few
changes in the EXEC at that time However, during the year in which we were running on
I 50 he added many features that will be detailed below.

KitowlaJgr Workshop development Reported as of 7/74 page l7"*

SRI ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
19 Tenex Development

We discoved that our changes and modifications in the EXEC posed problems similar to those
we had met in TENEX development. These were that, though making changes to a running
version was relatively easy, the process of incorporating them int< a new BBN version was
exceedingly laborious. So the release of EXEC 1.51 posed a major obstacle.

Bringing up EXEC 1.51

When EXEC 1.51 was released, we found ourselves faced with the following dilemma. The
new EXEC had some increased speed, efficiency, and new features that we wxnted, but our
1.50 changes were scatt Ted throughout the code of 1.50. (Like TENEX, the EXEC is broken
into several modules; .Vvvever. since the EXEC is smaller, ther? are only ten, rather than 45
modules.) We decided to localize our changes into a specific arei. •>

We decided that the most appropriate way to include our changes was to modify the BBN
EXEC in the following way. First, we tried to put all our changes into one package, called
SRIXEC. Any extra routines that the user would call were included in this package. Second,
we wrote a new command dispatch table, which included the extra commands that we had
added to the EXEC. Third, and most important, we placed all our changes under assembly
switch control. For those of you unfamiliar with this term, this means that by defining a flag,
such as SRIARC - I, we tell the compiler that we wish to include our code. If this flag is set
to zero, our code is not assembled in the EXEC. Thus we have total control over which of
our modificatiom are activated, and which are left in a BBN context. The definition of all
these switches is found in SRIDEF

We found this methodology very useful, since over time we have decided to eliminate some of
our changes. Before this organization existed, eliminating a modification was almost as
difficult as addmg it. Now it is simply a matter of setting the assembly switch to off

Major Modifications to the EXEC

During this contract period we have inade two substantial modifications to the EXEC
Otherwise, we have carried forward the change^ previously made in version 1 50. The two
new features are to define a number of difTerent user types, all with different capabilities and
available subsystems, and second to have the EXEC maintain each users idem (needed for
NLS) and his group number (necessary for the group allocation system). ^

The necessity of difTerent user types was apparent from the very heterogeneous nature of our
user communitv We found oursv'":. f.ced with setting up user parameters for the following
types of usets. They are; -* '•

a) Network users who have access to the ARPANET, but are allowed to use only the NLS
subsystem, i.e., they are denied access to such programs as TECO. MACRO, and
LOADER

b) Commercial users are similar to Network users, but are denied access to the ARPANET.
Thus they are not allowed to use such programs as TELNET and FTP '■■■

page 176 Knowledge W'orkshop Dv-vdopmcn« -- RcportH as of 7/74

SMI At« JO IAN /*: b 34PM ??1 1 <

IV Workshop Foundation
1^ Tcncx Developmciil

c) NIC users arc allowed »ecess to a very small subset of comands and subsystems, but are
allowed to run only the NIC/QUERY system.

These user types are also allowed a subset of EXEC commands, and in particular are denied
access to programming commands, such as START, ENTRY, and DDT, and also denied
certain commands that are inappropriate, such as LIST.

We have found this mechanism useful from a managerial point of view, in that users arc

allowed only the capabilities for which they have contracted. It also increases the efficiency of
the system as all the above user types share the common attribute of being limited primarily to
NIS This increases system responsiveness, as all available memory can be used to run NLS.
without competition from other large subsystems, such as FORTRAN. MACRO. LISP, and
LOADER

The other substantial change was to have the EXEC maintain information about a user's idcnt
and group number. As will be discussed below, we base installed a group allocation system,
which regulates login access to our system. Since the system works on the basis of N
membus of group X allowed on at any given time, it was necessary to include this information
in a database available to the EXEC. At the same time, we also added a feature so that the
EXEC would have that user's ident available, as a convenience to the user.

The actual philosophv and mechanics of the allocation system wiil be discussed below in the
section on Analysis. However, what the EXEC does is as follows: At login time, the EXEC
queries the database of group number and ident maintained for each user by the operators
On the basis of a user's group lumber, and the number of other users in his group currently
logged in, the EXEC determines whether or not tins user can h" e access to the system. If
the system is already overloaded, the EXEC denies the user a :ess. and he must try again
later.

However, if the EXEC determines that this user can log in, the EXEC then gets th; t users
ident from the same database. The EXEC saves the ident in a monitor table, and NTS can
later query that table to find the user's ident. This saves the user the inconvenience of having
to type his ident every time he enters NLS

In the event that more than one person logs into the same directory, a list of idents is stored.
The EXEC asks the user to provide his particular ident, and then cl'\:ks this ident against the
total list for that directory. If the ident is valid, the EXEC saves it away. A".d if the ident is
not permissible tor that directory, then the EXEC asks ?gain.

Summary of ARC Modifications to the EXEC

As mentioned, many of the EXEC changes have been written in the past, and are carried
forward with »-ach new version. The following is a list of all the changes we cnrrentlv
maintain:

A. Changes implemented bv BBN in their version of the EXEC:

Knowledge Workshop Dcvelopmcni -- Reported as ol 7/74 page 177

. ■-- . . _ _ - ■' ' r- i ~ r - ^ T- , f "-T-"" il.ii I I -'iTlf TTBT ■«n~l

SRI AH(30 JAiWb 5 34PM22133

IV Workshop Foundation
1^ Tcni»x Development

1) SRI-ARC charge in password of login directory command. This allows a user to change
directly his own password, without the need for intervention by tne operators.

2) SRI-ARC DOWNTIME c .nmand: This copies the file < SYSTEM >
SCHEDULED-DOWNTIME to the user's terminal, and informs the user of the up-down
schedule of the system. '•-■ •*

3; SRI-ARC DISCUSE command, which tells the total number of disk pages that are free
or in use.

B. Changes we maintain at ARC to improve our working environment:

1) SRI-ARC network user definitions, which include . . .

a) restriction of EXEC commands to network users (unless they are NETWHEELs).

b) default to < NETSYS> (rather than <SUBSYS->) for programs.

2) SR .-ARC commercial user definitions, these

a) restrict EXEC commands to commercial users.

b) default to <COMSYS> (rather than <SUBSYS>) for programs.

4) SRI-ARC group allocation scheme, includes (mentioned above):

a) Login restrictions

b) GROUPSTAT and ELOG commands

5) SRI-ARC autologout of inactive jobs stuff, which includes the REFUSE
AUTOLOGOUT and RECEIVE AUTOLOGOUT commands (requires SRI-ARC JSYS
A1LJB)

6) SRI-ARC terminal types IMLACs and LINEPROCESSOR:

a) IMLACs are terminal types 5 ino long vectors) & 6 (long vectors)

b) LINEPROCESSORs are terminal type 13

c) This also assumes TENEX has the needed terminal typ's

7) SRI-ARC EILSTAT command, which iways prints connected directory.

8) SRI-ARC COMMAND ACCEPT feature, which treats COMMAND ACCEPT
(Control-D) as equivalent to EOL in EXEC.

page 17« Knowledge Workshop Developmcnl - Reported as of 7/74

i- --IT B -—--

SKI ARC 30 JAN 76 5 34PM 221 JJ

!V Workshop Foundation
I1) Tcnex Development

9) SRI-ARC ident stuff, includes:

a) Setting ident at login time

b) (requires SRI-ARC JSYS SJBST and RJBST)

10) Allow user to log in without typing LOG

11) Tell user about new Journal mail at login time .4

12) SRI-ARC MESSAGE command, that is shorthand for using READMAIL subsystem

13) SRI-ARC BYE command, that is equivalent to the BREAK (LINKS) command ^u:

!4) SRI-ARC SYSTAT command, which doesn't type the entire SYSTAT if the load is too
high, unless the user is a network user, a commercial user, or a user who has certain
special privileges necessary to system maintenance. ^ •

Knowledge Workshop Development -- Reported a% of 7/74 pajjc 179

- — ' -- f T' ' r
T ^1—"n

.. ■

SRI-ARC 30 JAN 76 5 34PM ...133

System Measurement Tools
(by Dor.a Id I Andrews)

INTRODUCTION

We have developed two kinds of system measurement tools at ARC during the report period. <

The first tool is a system of collecting and displaying information about our PDF-10 TENEX
system-both about how it is performing and how it is being used. This system is called
Superwatch. -^

The other tool is a general tracing fr i'.ity for NLS debugging and analysis work. It consists of a
Trace subsystem and a Cross-Reference subsystem. ^

These tools are independent, but can be used together to g^t information about NLS performance
on our TENEX.

SUPERWATCH MEASUREMENT SYSTEM

Motivations for Superwatch.

The Superwatch system grew out jf a need to identify problems within our TENEX. At the
time we did not know whether ,nese problems were software performance problems, hardware
failures, or configuration problems. -

BBN provided a subsystem called "watch", that printed very general system information and
CPU usage by 'jser. Also, an EXEC command could be used to get some statistics about
system performan:e and subsystem usage. We found these two facilities quite inadequate: they
did not provide us with the information we needed.

Also, considering our overall plans, we wanted to obtain a record of system performance that
we could refer to later. This would allow us to compare system configurations, various
versions of NLS, etc.

Design

As a first step in implementing Superwatch. we studied the structure of the TENEX scheduler
and memory manager, and inserted metering codes in strategic places. —

This usually took the form of incrementing a counter for every event we wished to meter.
In many cases it consisted of timing sections of code and adding the time used to a
variable, and incrementing a counter. Tht* average time could be computed from these two
variables. By recording these variables at intervals, the average !ime during a interval could
be computed.

Knowledge Workshop Development - Reported as of 7/74 page

Preceding page blank

SRI-ARC 30 JAN 76 5 34PM 22133

IV Workshop Foundation
20 Svslem Measurement Tools

The metering eode lies entirely within the TENEX monitor. CD. a.

The meters must be sampled at intervals to get meaningful statisties. This sampling is done by
a user program exeeuting a speeial JSYS (system eall).

The user program that does the sampling is a portion of Superwateh. The meters are
eolleeted and written on a file in a raw form. -~ :

The collection process must not impose much load on the sys.cm, otherwise it would not be
possible to get a realistic measurement of the system as it runs. .:^;

The load imposed by Superwateh while collecting is a function of the collection interval. In
the 15-minute interval we use to obtain our daily records, Superwatrn uses 0.1 % of the
CPU : :r

Superwateh also reads the raw sampling information and prints it in a form suitable for
studying. ; -

Since there are many mete.s, and many statistics that can be computed from them, the user
may specify just what he wants to have. n:s -

The user may have the statistics printed either in tabular form or in graphic (histogram)
form.

Examples of Superwateh graphs are shown on the following pages. -'t

page 182 Knowtalge 'Workshop Development -• Repor^d as of 7/74

,i I ■ I T.T-f^"'-^

bKi ARC 30 JAN ?6 5 34PM iflM 33

IV Workshop Foundation
20 System Measurcmcnl Tools

TIME PLOT OF AVERAGE PER CENT OF CPU TIME CHARGED
TO USER ACCOUNTS FOR WEEK OF 1/20/74

x axis labeled in units of hr.min, xunit - ^0 minutes

6 1
5 3
46
3 8
3 0
2 3
1 5

7
0 . 0

*
* * * *
; * * *

* * * * *

+
0 : 00

* * *
* * *
* * *
* * *
* * *

* *
* * * * *

+
5 : 00

+
10 : 00

* *
* * * ♦

****** ***
****** *******

15:00 20 : 00

TIME PLOT OF AVERAGE NUMBER OF NETWORK USERS FOR
W£EK OF 1/20/74

x axis labeled in units of hrmin. xunit = 30 minutes

9
8
7
6

5

4

3

2

* *
* *

**** *****

+
> : 00 5 : 00

* * * *

************* * *

'0:00 ! 5 : 00
+

2 0:00

Knowledge Workshop Dcveloprocnl -- Reporlcd as of yiA page IM

. T^--,-..=^ ^äj ^*-^

SRI ARC 30 IAN 76 5 34PM 22133

IV Workshop Foundation
20 System Mcasuremenl Tools

TIME PLOT OF AVERAGE NUMBER OF USERS FOR
WEEK or :/20/?4

\ axis labeled in units of hr:m;r.. xunit = 30 minutes

1
7

6

5

4

3

2
1
0
9

8
7
6
5
4
3
2

♦ * ♦

* ♦ * *

******«*««*

*

*

* *
* ♦

* * *
* * *
* * *
* * *
* * *
* * *
* * *
* « *

t * *

* * *
* * *
* * *
* * *
* * *
* * *

*
* * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *

* *
* *
* *
* ♦

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

* *
* * * *

* * * * »
* * * T *• V *

* * * V * * *

* *
* * *
* * *
* * -
* * *
* * *
* * * *

"t-

0 : 00 5 : 00
+

10 : 00 5:00 20 : 00

Capabilities

The statistics gathering and printing features of Superwatch have several useful aspects:

Th«. lies generated by the sampling process are relatively compact and it is reasonable to
keep them on tape. Individual statistics can be printed by returning the file in questio- and
using the printing features of Superwatch This avoids keeping the information on paper.

We have arranged our TEN EX startup procedure so that Superwatch is started whenever
TENEX is started. The collection interval is set to 1 i minutes, and it runs until TENEX
crashes or is halted. Thus we have a record of TENEX performance (and by the absence
of information, a record of downtime) ^

When a user wishes to have some statistics printed, he specifies: ,:= a

The day in question.

The time interval, including a whole day.

The set of statistics he wishes to see

page 184 Knowledge Workshop Development -- Reported as of 7/74

a^^atiliaaMilMi

SRI ARC 30 JAN 7b 5 34PM 22133

IV Workshop Foundation
20 System Measurement Tools

Whether he wants averages, a tabular printout of values for each interval, or both.

The user can also speeify that he wants to see a graph of a particular statistic over the
period in question. He then has the choice of a plot of the statistic versus time of day. or a
distribution of the statistic for that period. :;,...

Another mode of Superwatch printout allows users at display terminals to v.ee a real-time
histogram plot of a set of statistics. .: :.

In addition, three 'inusual features were implemented ' Superwatch system:

A Program Counter (PC) sampling feature is used to measure program execution timt>.
The user specifies a 'ower bound and a range size for the region of his program he wishes
to measure.

When the PC sampling feature is enabled, the TEN EX monitor checks the user (or system)
Program Counter at clock interrupt time. This represents a random sample of the program
execution location. The counter in the monitor tha. represei.ts the appropriate range is
incremented. This results in a distribution that approximates the distribution of program
execution time. •;

In a similar fashion, the location of instruction., causing page fault traps, or the address of
the fault reference, can be recorded in a table.

Both the PC and Fault samples arc printed in fabula» form, with the share of events in
each range indicated.

The PC sampler has been useful in identifying both TENEX and NLS bottlenecks-in seme
cases down to a few instructions. It is also very valuable to know that a portion of NLS.
fo' xample. is not critical at all and may be coded in a wasteful but useful way.

We used the PC sampler extensively to increase NLS efficiency by carefully coding
low-level character manipulation routines and the call/return routines.

Our Use of Superwatch

We maintain a daily record of system performance for both our ARC system and the
OFFICE-1 system. Analysis personnel obtain a brief summary and check performance
periodically.

Graphs of important statistics are printed, including the use of MLS (display NLS, teletype
NLS. broken down by local or network user) r

In the event of unusual or poor performance, systems personnel look at the statistics and
identify the problem, if necessary.

We aKo use the statistics to determine our need for more computer resources

Knowledge Workshop Development - Reported as of 7/74 page 1S5

■

SRI ARC 30 JAN '6 5 34PM 2.133

IV Workshop Foundation
20 System Measurement Tools

NLS MICROANALYS1S TOOLS

Motivations for NLS Analysis Techniques

NLS is a ver large system which is written by several programmers and is changing rapidly.
As development goes on, we wish to increase its efficiency. ■'■■ '-a

The system is coi. plex, and exhaustive checkout before releasing new systems is not feasible.

In this environment, sophisticated system debugging aids are very desirable. We have only
scratched the surface, but have found the following very useful.

NLS Flow Tracing Facility

The flow tracing facility runs as an NLS user program (does not involve special NLS source
code) and does two things to NLS:

It replaces the procedure call and return routines so that calls and returns can be recorded.

It enables two interrupt characters so that the tracing can be turned on and off at any time.

When enabled, the flow-tracing code records the following things on a file in condensed form:

Calls

Returns

New page references

Execution tinv at each of above events

Another program reads the condensed file and prints it in a suitable text form.

It is printed in a hierarchical form with each call causing subordination and each return
ending the subordination.

The user has control of how much information he sees. The depth into the structure is
controlled, as well as the total output. Also, he can elect to see only one branch in a large
file.

We have found the tracing facility very useful for:

Finding bugs

Identifying time sinks

Making code more localized so that fewer xige ; are referenced to perform a given task

page 186 Knowledge Workshop Development - Reported as of 7/74

ÜrrTiTinni— A^.^-^ ^-^ —^-. ^=. -^--y^ ., a.,^^ „.,_ ^.^^.Jäfaifai:

SRI ARC 30 JAN 76 5 34PM 22133

!V Workshop Foundation
20 Svstem Measurement Tools

Understanding the operation of a given command in NLS.

Nf S Cross-Reference Facility

Sysguide Creation

As a by-product of the cross-reference facility, a file called "Sysguide" can be created.

The Sysguide file his a statement fc .ach procedure and each data record definition. The
name of the statement is the same as the name of the symbol. The statement contains a
file link to the source procedure or record definition. In addition, some documentation
about the purpose of that procedure is included.

Th ■ ^ ^uide is used to locate procedure source code. This is necessary si.ice there are
s(it .<*< source files of NLS source code.

In t le cur.ent version o" NLS. a JUMP TO NAME EXTERNAL command can be used to
jump through the Sysguide file to a given proce^'irc or record definition

Cross-Reference Creation

Basically, the Cross-Reference system is used to obtain a data structure describing the
procedure and data references in NLS. It is ised to find out who calls whom, who
references what data. etc. *

In creating a cross-reference, the : ser specifies memory bounds tor references and bounds
for referenced locations. Also, an opcode filter is specified to indicate the type of references
that are of ii.terest.

The Cross-Reference system then reads the actual object code for rs'LS (oi any subsystem)
and creates a data structure representing the reference network

Printing from Cross-Reference Data Base

The user prints part or all of the cross-rtference database by using one of several
commands in «he Cross-Reference system.

The entire cross-reference may br printed, but it is usually very large.

.he user may specify a symbol and ask to see all references to it. or (if it is a procedure
name) all references from it. or both.

In addition, the user may ask to ee references to and/or from each reference, and so on. to
a specified depth

Alternatively, the user may ask if a efetence (to/from) one procedure will result in a
reference (to/from) another given procedure

Kmmiedstc Workshop Dcvclopiricni - Rcporlrd as of 7/74 p.igc IS"

. i- if. n. - a i - i - - . -i . . . ^-E.-^-^^ _ ^^^

SRI ARC 30 JAN 76 b 34PM 22133

IV Workshop Foundation
20 System Measurement Tools

Our Use of the Cross-Reference Facility -- '2

The Sysguid»* file is the most frequently used part of the Cross-Reference Facility. ■-

The Cross-Reference system i Ven used on a limited basis and proven to be useful.
However, it is not used as much a t might be. probably for these reasons:

1) It is very easy to read and do searches in NLS source code using the NLS system itself.
This reduces the need for a cross-reference system.

2) It takes about five minutes of CPU time to create the cross-reference database. The
NLS system is frequently changing and a cross-reference database is not created for each
new NLS system. Hence there is raiely an up-to-date cross-reference database.

Summary

We have learned a great deal and benefited in several ways by developing these analysis tools:

These tools have been very I. 'pful in understanding TENEX operation, configuring our
system, developing and tuning NLS. '•■*•>■

We have learned what analysis tools are the most necessary: the real-time measurement of
operating system performance. PC sampling, and program tracing. *

We krow to a large degree just how we want those tools to operate •*'

While this has not been an exhaustive attempt at tool building, we have found it very
worthwhile.

pa'.c 18H Knowledge Workshop Development •■ Reportrd as of 7/74

— - — r ■—JMi^a. -' ■ I

SRI AR(30 JAN 76 5 34PM 2t
J13i

Appendix
HIGHLIGHTS O^ THE PREVIOUS REPORT

TEAM AUGMENTATION

In the period June 1^70 through June 1^72. our work toward Team Augmentation fell into five
areas: improvement of our dialog support system, the initial work on our handbook, our baseline
reeord system, development of basic MLS. and reorganization of our laboratory staff.

Dialog Support System

As with the XDS-^40 Journal system, the PDP-10 Journal system developed in that period
served as an initial open-ended information storage and retrieval system, oriented toward
reeording the thoughts, notes, designs, work pieces, and repor »uv; jted by users.

ARC and Network personnel used the Journal system daily.

From April 1971 to Ju.ie 1972, approximately 16(X) documents were gei.eraled at ARC and
submitted to the Journal.

The PDP-10 Journal system provided for automated entry of (mime documents in eontiast m
the essentially manual techniq ie used on the XDS-940.

Delivery of Journal submissions to authors and recipients was automated on the PDP-10
System.

Online Journal documents may now be reached through Nl.S by simply using the catalog
number as a file name.

The improved access to Journal documents resumed in increased linking between Journal
documents, whereby dialogs began to involve a number of documents, all interlinked

Handbook

We began development of a "Handbook." a "supet-document" that contained the beginnings
of an up-to-date, large. cK.^.led. highly cros.vv:ferenced and well-indexed descripti >n of ARC
project-team activity.

Such a document would have provided ARC, as a team tacklug complex
system-development projects, with the highest possible visibility over its working
environment

Toward the end of the contract period we set up a team to design a Handbook system
which we intended to construe, index, and maintain this document. i'

Knowledge Workshop Doclopmeni - Reponcd as of 7/74 page IM^

bKI Af« 30 JAN 7b 5 3^PM 22133

Appendix
21 Highlights of the Previous Report

Baseline Record System d-

We constantly face more opportunities for changes or additions to our evolving system than we
have resources to carry out. Therefore we have attempted to use NLS to find ways to make
more effective, coordinated analysis of our ideas, and of our people, system, and material
resources. ■»••>

The resi l of such coordinated analysis was the adoption of a current visible plan, or
"baseline of expected events, agreed upon system developments, their external configurations,
and resource allocations.

The information relative to the planned system developments was contained in our Baseline
Recc-d.

The Baseline Record was a special subcollection or the Journal, it consisted of a series of files
specially formatted to contain task and resourc- allocation information, including particularly
files of plans, specifications, analyses, designs, tic.

The 1^72 Baseline Record system was concentrated on the recording of information relevant to
individual tasks being performed . under considcraton by various ARC staff members.

There were then over 200 asks of various magnitudes to consider in our planning and
operations! environment at any time. These ranged from simple bug-fixing to complex
de>ig'i or implementation tasks that may require the eflorts of several people over manv
mopths. • -

We developed a set of programs with an initial data storage system that organized
information recorded about these tasks with features that permitted routine summary views
to be produced and that also made available flexible, user-created views of the Baseline task
information. ■• —

Procedures were developed for data collection and input and f.r view production that aided
in weekly updating of the Record. These views were produced ii; hard copy and were also
entered into the Journal.

We wvre not satisfied with the 1^72 Baseline Record System. ;> •

We felt that our ARC users were not well guided and trained in Baseline Record System
use and the initial system did not produce views thai were useful enough, mainly because
most of the needed data were not in the system. ■ ■ »•>

Although we used ARC's Baseline Record System on a current task-by-task basis during the
past year, we still needed 10 develop a more complete, "higher level" picture of what new
ARC system developments (functions, features, stages.) we wanted and expected to see
Among other considerations, thi« included better definition of activity goals.

page 190 Knowledge Wofksbcp Devetofuneni - Reported a» '^7/74

SRI AR(30 JAN 76 b 24FM 2213'i

Appendix
21 J'ighiiglits of ihc Previous Report

Basic MLS

In 'he enntracl ending 1^72, we look several steps to further augment the software engineer.
In fact, we coined the acronym SEAS (for Software Engineer Augmentation System) to give
sp-'ific system orientation towards the end of developing a full and b* Mnced set of tools,
techniques, methods, principles, etc. for augmenting software engineers. • ^

The developments described below were part of an accelerating activity—an important part
of our near-future plans in the next contract period involve a greater level of activity here.

TNLS and DEX

A new and effective typewriter version (TNLS) has found wide use, bf.th at ARC and at
si.es on the AR PA Network.

Improvements were made in the display version (DNLS), and a first version of an ofTline
mode (DEX) was introduced.

Changes that made possible cross-file editing allowed any two passages to be involved by a
given command.

In TNI.S. addresses in a command may be "links" that could call any passage in an) file
on the system.

In DNLS, split screens allowed the user to view any two passages and control cross-file
editing visually.

Viewspecs made possible selective assimilation of information from one file into another

New special purpose subsystems were developed or improved.

These included a sort-merge system, a user program .ystem, and the output processor.

Language development continued.

In 1^72, the primary language systems developed and in ise at ARC were the 1 rce-Meta
Compiler-compiler System and the LIO Programming language system, which was written
in Tree-Mela.

Work took place on a Modular Programming System (MPS) in collaboration with a group
at the Xerox Palo Alto Research Center.

IrMerrnl Organisation

During 1^72, several ARC organizational arrangements were introduced, centering, in the
early part of the period, mainly on line-activity structure and associated roles

Knowledge W'orkstv p Deveiopmer>l ■ Reported a* of 7/74 page 1^1

--r--' I - f -i I -fa

SRI ARC 30 JAN 76 5 34PM ?2133

Appendix
21 Highlights of the Previous Report

The creation of pusher (task leader) roles for tasks and coordination roles for system
architecture, methodology, and pt.sonnel resources placed the responsibility more directly
on selected individuals. a r

Pusher roles were defined in the framework of the developing Baseline management system.
Coordinating roies were also carried out in this environment.

In the fall of 1971. . e set up a four-man Executive Management Committee (EMC) to
carry out much of the day-to-day opekating management. . .. „

During the firsi half of i()72. Dr. Engelbart established a new, broader overall
organizational structure. J^

This structure consisted of three main activities that cover our framework and goal setting,
line operation, and personal and organizational development needs.

These activities were called: FRAMAC, LINAC, and PODAC.

FRAMAC was to discuss aid define the ARC intellectual framework and set longer range
goals and plans.

LINAC was to cTy out activities within the framework that move us toward the goals,
including more detaiki, shorter range planning.

PODAC institutionalizes continuing perso lal and organizational development.

NETWORK INFORMATION CENTER: OPERATIONS AND DEVELOPMENT

The ARPANET could be viewed as a collection of resources, people, hardware, software data,
and special services that could be brought together for short or long periods to /ork
cooperatively.

Built upon hardware and funciamental software connections are the processes that assist users
to find the geographically distributed facilities tliey needed to solve or study problems and to
allow scattered people to work together effectively in tasks of mutual interest.

We see the Network Information Center (NIC) as one part of the ARPANET experiment that
was inte ested in the latter problems.

The MC helps to create and sustain the sense of community needed in an experiment such
as the ARPANET.

The NIC was not a classical information center because it provided a wider range than
bibliographic and library services.

page l*?: KnowledtcC W'orkshop Dcvclopmcni - Rcporicd as of 7/fA

SRI ARC 30 JAN 76 b 3' nM 22133

Appendix
21 Highlights of the Previous Report

The NIC Public

One of the problems in the design of an information service was to determine the clientele and
its needs. Our initial analysis showed us four main needs:

Reference and General Network Information.

Collaboration Support.

Document Handline and Creation, and

Training.

The clientele for NIC appeared initially to be people developing and building the Network,
who were to be followed by those whose resen»^ T development interests would be intimately
connected with Network resources or »• Iio would be experimental users of \arious Network
resources.

NIC Services

Jo meet the above goals, the NIC services available at the end of the report period. May 1^72,
through the Net were:

Online: • '

(1) Access to the typewriter version (TNLS) of the Augmentation Research Center Online
System (NLS) for communique creation, access, and other experimental uses.

(2) Access to Journal. Numbei, and Identification Systems, which allowed messages and
documents to be transmitted to Network participants

(3) Access to a number of online information bases »hrough a special Locator file using
NLS link mechanisms.

Offline:

(1) A Network Information Center Station set up at each ,ite with:

(a) A Station Agent to aid in used of the NIC

(b) A Liaison to provide technical information about his site

(c) A Station Collection containing a subcolleciion of document of interest to Network
participants.

(2) Techniques for gathering, producing, and maintaining N Functional Documents, such
as

K turn ledge Workshop Dodupmcnl •• Repofled as of 7/74 page W

. _

-

SRI ARC 30 JAN 76 5 34PM 22133

Appendix
21 Highlights of the Previous Report

(a) Current Catalog of the NIC Collection

(b) ARPA Network Resource Notebook

(c) Directory of Network Participants

(d) NIC User Guide.

(3) General Network referral and handling of document requests.

(4) Building of a collection of documents potentially valuable to the Network Coiiimunity.
(In the beginning we tried to collect docume its valuable to network builders.)

(5) Crude selective distiibulion to Station Collections.

(6) Training in use of NIC services and facilities.

NETWORK PARTICIPATION

Our Network participation outside of NIC activity was in two main areas: protocol development
through work in several protocol design communities and general Network coordination through
membership on the short-lived Network Working Group Steering Committee and its successor.
Network Facilitators Group.

COMPUTER FACILITY

Hardware

A' the end of 1971. we transferred our computer opeiations from an XDS-940 to a PDP-10
computer. The transfer effort was described in our interim report for the first year [1]. ^ •

Hardware aclivi'v during 1972 focused on additional tuning of the new configuration,
maintenance, troubleshooting and operation of the facility, and some upgrading of critical parts
of the system.

Our hardware configuration co.'tai.ed a number of old, one-of-a-kind pieces of equipment
brought over to the PDP-10 system from the previous XDS-940 system. These pieces of
equipment proved difficult to maintain and studies were launched on how to replace or
upgrade this equipment. A new BBN netwi .k inte fact and a new DEC RP-02 disc system
were installed in the spring of 1972. replacing older unreliable equipment. Hardware upgrading
of our display system and its special core box was t>.; un to provide temporary relief until a
replacement system could be planned. An additional 32iv ,f core was to be add^J shortly.
Studies leading to reommendations to add another channel, disc controller, and set M disc
drives were completed

page 1^4 Knowledge Workshop Dcvclopmcn» -- Reported as of 7/74

t

-■

SKI AKC 30 JAN 7b 6J4PM22133

Appendix
21 Highlights of (he Previous Report

System Software

TENEX

Wc cooperated actively with BBN and other users in debugging and maintaining TENEX,
and developed a few new features, both visible to users and internal tn the system.

Within the system:

We abandoned TENDMP tor loading the monitor from DECTAPE and used instead
DTBC 01 from DEC

We added a JSYS, a jump to a monitor subroutine, to say that padding (sending rubouts)
was required for fast terminals when a CR or IF was output.

We made many changes to \\is teletype routines to accommodate our displays.

To greatly simplify startup, we changed the starting address of the monitor from 100
(whieh goes m mediately to DDT; to SYSGOI.

We eeased to add eode to existing Hies when we got new monitor releases. Instead, we
defined additional files that were assembled with each group of files and, where possible,
made our additions m these new files with JRSTs and CALLs to the new eode.

We modified the y .iem so th^» if CHECKDSK does not run successfully, then nothing
else, e.g. AUTO-STARTUP jobs, could run (except for the operator's console and one
special dial-up line) until the disk was fixed and CHECKDSK wa« 'un successfully.

In the user's view:

We set up an advise coniinand so that one terminal may control a job loaded at another
terminal.

We added routines that log out a user who does nothing for a certain time, and that refuse
entry if the system is overloaded.

REFERENCES

[1] (2 Id la) No Author. Network Information Center and Compu'er Augmented Team
Interaction. Augmentation Research Center. Stanford Research Institute, Menlo Park.
Caliibrma 94025. ll-FEB-72. (8277.)

Knowledge Workshop Devcloftmenl - Renorled as of 7/74 page Iws

